Small correction below: (01)
On Jul 7, 2012, at 9:51 AM, Pat Hayes wrote: (02)
>
> On Jul 7, 2012, at 9:39 AM, Michael Brunnbauer wrote:
>
>>
>> Hello Chris,
>>
>> On Fri, Jul 06, 2012 at 01:08:57PM -0500, Chris Menzel wrote:
>>>> So someone trying to define OWL FOL would have to be careful to stay in
>>>> first
>>>> order logic because Properties are first class entities ? Would that be a
>>>> difficult problem ?
>>> As long as one adds no special semantic requirement that there must be as
>>> many properties as there are sets of individuals (which, by Cantor's
>>> Theorem, is simply impossible to require if properties are "first-class
>>> entities", i.e., a species of individual), there is no risk of moving
>>> beyond first-order logic.
>>
>> After some reading, I think I begin to understand this. As long as the
>> properties I can quantify over are first class entities, I have Henkin
>> semantics. Only if I can quantify over all possible properties, I get true
>> second order logic.
>>
>
> Exactly. It all turns on what assumptions the semantic makes about what
>higher-order entities (functions, relations) must exist. Classical second
>order logic assumes that all mathematically possible functions and relations
>exist. Henkin semantics assumes that all lambda-definable entities exist.
>Common Logic makes no existence assumptions at all other than that names must
>denote things with relational extensions. (03)
Actually, that all *terms* must denote things with extensions. So if you use
functions, that use does carry some consequences for the number of entities in
the universe. (04)
Pat (05)
>
> So here is a case which distinguishes CL from Henkin. Do
>
> (P a)
> (Q b)
>
> together entail
>
> (exists x)(and (x a)(x b) ))
>
> ?
>
> CL says no. Henkin says yes: the relevant function is (lambda (y) (or (P y)(Q
>y))).
>
> Pat
>
>> Regards,
>>
>> Michael Brunnbauer
>>
>> --
>> ++ Michael Brunnbauer
>> ++ netEstate GmbH
>> ++ Geisenhausener Straße 11a
>> ++ 81379 München
>> ++ Tel +49 89 32 19 77 80
>> ++ Fax +49 89 32 19 77 89
>> ++ E-Mail brunni@xxxxxxxxxxxx
>> ++ http://www.netestate.de/
>> ++
>> ++ Sitz: München, HRB Nr.142452 (Handelsregister B München)
>> ++ USt-IdNr. DE221033342
>> ++ Geschäftsführer: Michael Brunnbauer, Franz Brunnbauer
>> ++ Prokurist: Dipl. Kfm. (Univ.) Markus Hendel
>>
>> _________________________________________________________________
>> Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/
>> Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/
>> Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx
>> Shared Files: http://ontolog.cim3.net/file/
>> Community Wiki: http://ontolog.cim3.net/wiki/
>> To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J
>>
>>
>
> ------------------------------------------------------------
> IHMC (850)434 8903 or (650)494 3973
> 40 South Alcaniz St. (850)202 4416 office
> Pensacola (850)202 4440 fax
> FL 32502 (850)291 0667 mobile
> phayesAT-SIGNihmc.us http://www.ihmc.us/users/phayes
>
>
>
>
>
>
> _________________________________________________________________
> Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/
> Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/
> Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx
> Shared Files: http://ontolog.cim3.net/file/
> Community Wiki: http://ontolog.cim3.net/wiki/
> To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J
>
> (06)
------------------------------------------------------------
IHMC (850)434 8903 or (650)494 3973
40 South Alcaniz St. (850)202 4416 office
Pensacola (850)202 4440 fax
FL 32502 (850)291 0667 mobile
phayesAT-SIGNihmc.us http://www.ihmc.us/users/phayes (07)
_________________________________________________________________
Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/
Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/
Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx
Shared Files: http://ontolog.cim3.net/file/
Community Wiki: http://ontolog.cim3.net/wiki/
To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J (08)
|