To: | Thomas Johnston <tmj44p@xxxxxxx>, Pat Hayes <phayes@xxxxxxx> |
---|---|
Cc: | "[ontolog-forum]" <ontolog-forum@xxxxxxxxxxxxxxxx> |
From: | Thomas Johnston <tmj44p@xxxxxxx> |
Date: | Sun, 18 Oct 2015 20:23:19 +0000 (UTC) |
Message-id: | <1376337004.2113953.1445199799796.JavaMail.yahoo@xxxxxxxxxxxxxx> |
Please ignore the text below, which begins "10/17/2015". It was a working draft, and I didn't mean to post it. The reply I want to post follows immediately below, and ends with that "10/17/2015".
10/18/2015.
You
said:
No
problems. You're a logician, and I'm not. Nonetheless, I have some
background in the philosophy of logic. And I think that this exchange
is worth pursuing, if just a little further. That is, worth it to me,
and possibly worth it to a few others here at OntoLog. And worth it
to you, because I think you've made a mistake about "some"
and "exists".
And
here's a passage from the SEP article Ontological Commitment,
which you recommended to me. It suggests that I have not been
describing a "non-solution to a non-problem".
"
... the quantifiers of first-order logic, properly understood, do not
carry existential commitment; they are not 'existentially loaded'.
Indeed, calling 'Ex' the 'existential quantifier' is a misnomer; it
would be better to call it the 'particular quantifier' in contrast
with the 'universal quantifier'. Ordinary language, on its face,
supports the view that quantification need not be existentially
loaded. ... (p.23)
(I
read this just an hour ago. The rest of this reply, down to where I
quote an extended version of this passage, was written several hours before I read
that material. I must say, I was quite chuffed ("chuffed":
(British) to be pleased with oneself.) to find this passage.
So
here goes. I begun with my point about types; the point about ontological commitment comes after that.
<<<
... why not distinguish predicates in predicate logic as (i)
predicates identifying the type that the particular(s) in the subject
position of the statements belong to (if any such should exist), and
(ii) predicates which ascribe properties or relationships to those
particulars.>>>
<<<Right.
As I briefly mentioned, this would be a multi-sorted logic, in which
your types are the sorts. Quantification is always relative to a type
(all fish..., there exists a man..., but never just plain forall or
exists) and the type name is required by the syntax rules to be
attached to the quantifier. There are many versions of this kind of
logic, varying in part by how complex the system of types/sorts is
allowed to be and how much one can say about them.>>>
Actually,
I was thinking of something that I hadn't seen included in typed
(multi-sorted) logics. I was thinking of distinguishing two kinds of
types -- types of particulars and types of properties/relationships
of particulars. I will call the former kinds, and the latter
features. Grammatically, kinds are the types of subject terms,
and features are the types of predicate terms – NPs and VPs, if you
will. And both are instances of universals – the one of universal
kinds, the other of universal features.
On
the standard view, kinds and features are both universals. (I'm using
"universals" and "types" interchangeably.) Kinds
are universals that are instantiated by particulars. Features are
universals that are instantiated by properties of particulars or
relationships among them. (These are standard distinctions in
Philosophy, going back to Aristotle, and are part of the background
ontology of natural language.)
So "Some
dragons breathe fire". Its NP identifies a kind – dragons. Its
VP identifies a predicate – breathes fire. (Previously, I used a
subscript "t" to represent kinds and "p" for features. I should have used "k" and "f".)
<<<I
confess that this simply does not make sense to me. What is the
difference between "some" and "exists"? Some dogs
are happy exactly when happy dogs exist; what is the difference
here?>>>
I
might want to express the thought that, if dogs did exist, some of
them would be happy. Or the thought that, if dragons existed, some of
them would be fire-breathing. Some dogs; some dragons; but no
ontological commitment, no need to agree that such things really
exist. The natural language sense of "some" does not
presuppose (and certainly does not entail) existence, although I
agree that the most typical uses of "some" probably do
presuppose existence (and so this presupposition could be the default
case).
Conversely,
I might want to express the thought that there really are dogs, and
all of them are renates, or that some of them are friendly. Or the thought that there really are
dragons, and all of them have wings, or that some of them are fire-breathing. All dogs; all dragons; some dogs; some dragons. And an
ontological commitment to both, i.e. an expressed or implied
assertion of their existence. "All" can presuppose
existence just as readily as "some" can. And "Some"
can refrain from a presupposition of existence, just as much as "All"
can.
And
besides being sure of some things that they exist, and sure of other
things that they do not exist, there are also things whose existence is, to
me, questionable. So that's why I suggested three "existence
values" rather than just two.
I
can talk about all dogs, or about some dogs, and in either case, I
can express a belief in the existence of dogs, a belief in their
non-existence, or an agnosticism about their existence. (This the
rational for my E, ~E and ?E).
Good
point. But why not express a "maybe" ontological commitment
with a three-valued existence operator – those values being yes
(E), no(~E), maybe (?E).
It's now 3:30pm
on the 18th. I stopped writing the material above about three hours ago. An
hour ago, I resumed the SEP article you recommended, Ontological
Commitment. Here is an extended passage from that article, with
some comments of mine interspersed.
"According
to the third objection to sufficiency, the quantifiers of first-order
logic, properly understood, do not carry existential commitment; they
are not 'existentially loaded'. Indeed, calling 'Ex' the
'existential quantifier' is a misnomer; it would be better to call it
the 'particular quantifier' in contrast with the 'universal
quantifier'. Ordinary language, on its face, supports the view that
quantification need not be existentially loaded. ... One only gets
existential import when one restricts the quantifier, explicitly or
implicitly, with an existence predicate.
(my italics) Thus, the correct translation into first-order
logic of 'dragons exist' is not 'Ex Dragon(x)', but 'Ex (Exists(x)
and Dragon(x)'. The quantifier 'Ex', by itself, is neutral with
respect to existence. (Pronounce 'Ex' 'for some x', not 'there exists
an x'.) (my italics) ...
In response to
the fictional Meinongian Wyman, Quine offers 'to give Wyman the word
'exist'. I'll try not to use it again. I still have 'is'. ... Indeed,
Quine could have also given the (radical) Meinongian the word 'is'
and any other predicate that purports to impose an ontological
restriction on the quantifier; for what is central to Quine's
criterion is that one cannot quantify over entities without
incurring ontological commitment to those entities.
...some
Meinongians explicitly deny that they are ontologically committed to
what they quantify over when their quantifiers are not existentially
loaded..." (pp.24-25)
And that's me,
although I object to being called a Meinongian. I'm much more an
Ockhamist.
Another
difference between this approach (which the author calls "Meinongian
Quantifiers" and the one I suggest is that I think "may
exist" is just as important, in natural language reasoning, as
"exists" and "does not exist", and so our
existence operator needs to be three-valued. But that's a separate
issue. The main point of this passage is that others beside myself do
not agree with conflating existence claims and the "Some"
quantifier.
This is a good
point for me to end my side of the discussion, unless you or John
have specific points you would like to continue to discuss. Both of
you suppose conflating ontological commitment with the "Some"
operator. (Later in Ontological Commitment, the author quotes Arthur
Fine, who has an argument that ontological commitment should be
conflated with the "All" quantifier. But I don't side with
either of you (and your Quinean position), or with Fine. Putting
"There is" or "There exists" together with one of
the quantifiers was, as I said earlier, a choice. And as I said, then
and now, I think it was wrong to do that, and I've provided arguments
explaining why I think it was wrong.
Thanks for
listening, and participating.
Regards,
Tom ---------- ignore the following material ---------- 10/17/2015. Pat, I said: <<<> ... why not distinguish predicates in predicate logic as (i) predicates identifying the type that the particular(s) in the subject position of the statements belong to (if any such should exist), and (ii) predicates which ascribe properties or relationships to those particulars.>>> You replied: <<<Right. As I briefly mentioned, this would be a multi-sorted logic, in which your types are the sorts. Quantification is always relative to a type (all fish..., there exists a man..., but never just plain forall or exists) and the type name is required by the syntax rules to be attached to the quantifier. There are many versions of this kind of logic, varying in part by how complex the system of types/sorts is allowed to be and how much one can say about them. >>>I guess I was thinking of distinguishing two kinds of types -- types of particulars and types of properties/relationships of particulars. In my terminology: kinds and features. Both kinds and features are universals. Kinds are instantiated by particulars; Features are instantiated by properties of particulars or relationships among them. (These are standard distinctions in Philosophy, going back to Aristotle, and are part of the background ontology of natural language.) And I was thinking of atomic statements, like "Car #1 is blue" and "Car #2 is blue" as associating particulars (Car #1 and Car #2) with their type (Car), and then ascribing a property to it. In trope theory, the blue color of each car is also a particular; but, true to Aristotle, it's a particular that exists only because a particular of some type "has" it. Trope theory is a form of extreme nominalism, and if we allow ourselves to be realists, we will say that both cars have the same color. You said: <<<Frankly, this looks to me like a non-solution to a non-problem. Sorry to be so blunt. >>> No problems. If I were a logician talking to a bright but somewhat stubborn graduate student, I might be somewhat blunt myself. And I think our exchanges aren't far off that model. I do think I'm to some degree qualified to talk about the philosophy of logic. But I am no logician -- nowhere close. Nonetheless, this exchange seems to me worth pursuing, if just a little further. That is, worth it to me, and possibly worth it to a few others here at OntoLog. So here goes. ----- I said: <<<... why not separate the "All" and "Some" distinction from the "exists" attribution?>>> And you replied: <<<I confess that this simply does not make sense to me. What is the difference between "some" and "exists"? Some dogs are happy exactly when happy dogs exist; what is the difference here?>>> Here's the difference. I might want to express the thought that, if dogs did exist, some of them would be happy. Or the thought that, if dragons existed, some of them would be fire-breathing. Some dogs; some dragons; but no ontological commitment, no need to agree that such things really exist. The natural language sense of "some" does not presuppose (and certainly does not entail) existence, although I agree that the most typical uses of "some" probably do presuppose existence (and so this presupposition could be the default case). Conversely, I might want to express the thought that there really are dogs, and all of them are renates. Or the thought that there really are dragons, and all of them have wings. All dogs; all dragons; with an ontological commitment to both, i.e. an expressed or implied assertion of their existence. "All" can presuppose existence just as readily as "some" can. And "Some" can refrain from a presupposition of existence, just as much as "All" can. And besides being sure of some things that they exist, and sure of other things that they exist, there are also things whose existence is, to me, questionable. So that's why I suggested three "existence values" rather than just two. the difference between "some" and "exists". I can talk about all dogs, or about some dogs, and in either case, I can express a belief in the existence of dogs, a belief in their non-existence, or an agnosticism about their existence. (This the rational for E, ~E and ?E). ----- You said: <<<Why is ?Ex foo not just the disjunction ( Ex foo or ~Ex foo ) ?>>> Good point. But why not express a "maybe" ontological commitment with a three-valued existence operator (which, of course, is now not a quantifier) -- those values being yes (E), no(~E), maybe (?E). ----- On Saturday, October 17, 2015 8:23 PM, Pat Hayes <phayes@xxxxxxx> wrote: On Oct 16, 2015, at 10:02 PM, Thomas Johnston <tmj44p@xxxxxxx> wrote: > Pat, > This addresses just one point you made in your lengthy response. (BTW, I am studying the Ontological Commitment article in SEP. It is, unsurprisingly, excellent.) > > 10/16/2015. > Pat asked me what a predicate logic that I liked would look like. Well, I can't spell it out (and if I did, I might find myself wandering down dead-end alleys), but here are two things I'd like to see included (or to understand why including them wouldn't work): > First, as I suggested yesterday, why not distinguish predicates in predicate logic as (i) predicates identifying the type that the particular(s) in the subject position of the statements belong to (if any such should exist), and (ii) predicates which ascribe properties or relationships to those particulars. Right. As I briefly mentioned, this would be a multi-sorted logic, in which your types are the sorts. Quantification is always relative to a type (all fish..., there exists a man..., but never just plain forall or exists) and the type name is required by the syntax rules to be attached to the quantifier. There are many versions of this kind of logic, varying in part by how complex the system of types/sorts is allowed to be and how much one can say about them. > Second, why not separate the "All" and "Some" distinction from the "exists" attribution. I confess that this simply does not make sense to me. What is the difference between "some" and "exists"? Some dogs are happy exactly when happy dogs exist; what is the difference here? > The first distinction would qualify statements with "All" ("A") or "Some" (S"); the second would qualify statements with "Exists" (E), "Does not exist" (~E)" or "May or may not exist" (?E). Why is ?Ex foo not just the disjunction ( Ex foo or ~Ex foo ) ? > Here are eight examples. Each one has, in order, (i) the natural language statement to be expressed formally; (ii) the formal _expression_; and (iii) the literal translation from the formal _expression_ back into natural language. > Using my eight statements as examples (extension to Pat's examples should be straightforward): > (i) "There are dogs." ExSx(Dtx). "There exists an x whose type is Dog". Why is this not simply ExDtx ? (If there is a distinction between them, what is this difference? Can you say what one of them would entail that the other does not?) And a technical question: your formula appears to have x bound by two binders, which is syntactically illegal. Is the x in the subformula SxDtx free, or bound by S? If the former, what is the syntactic relationship between Sx and Dtx? If the latter, the x in the outer Ex would seem to have no connection to the bound x in the inner formula. > (I think that ExAx(Dtx) is equivalent, and that this supports my contention that if there are some dogs, there are also all dogs.) > (ii) "There aren't any dogs." ~ExAx(Dtx). "There exists no x whose type is Dog". (I think that ~ExSx(Dtx) is equivalent, and that this supports my contention that if there are all dogs, there are also some dogs.) > (iii) "If there are any dogs, some of them will be friendly." ?ExSx(Dtx & Fpx). "There may or may not exist xs whose type is Dog, and if any such exist, some will have the property of being friendly." Your English sentence has a conditional in it, which is missing from your proposed formalization. Seems to me the correct formalization is ?ExDtx & (ExDtx -> SxFpx) but I confess to not really following how the E operator is supposed to work. > (iv) "If there are any dogs, all of them will be renates". ?ExAx(Dtx & Rpx). "There may or may not exist xs whose type is Dog, and if any such exist, all of them will have the property of being a renate." > (v) "There are dogs, and some of them are friendly." ExSx(Dtx & Fpx). "There are xs whose type is Dog, and some of them have the property of being friendly." > (vi) "There are dogs, and all of them are renates." ExAx(Dtx & Rpx) There are xs whose type is Dog, and all of them have the property of being renates." > (vii) "If there are any dogs, some of them will not be black". ?ExSx(Dtx & ~Bpx). "There may or may not exist xs whose type is Dog, and if any such exist, some of them will have the property of not being black." > (viii) "If there are any dogs, none of them will be made of gold". ?ExAx(Dtx & ~Gpx). "There may or may not exist xs whose type is Dog, and if any such exist, all of them will have the property of not being made of gold." > Of course, this is just the beginning of sketching out a predicate logic with these features. One thing to note is that it will require a three-valued logic. ? It will? Why?? > Another thing to note is that rules of inference have not been stated, nor deMorgan-like equivalences. But I still believe that this approach allows us to express natural language statements in a formalism, without forcing us to say things we don't want to say. Frankly, this looks to me like a non-solution to a non-problem. Sorry to be so blunt. Pat > > > > > > On Tuesday, October 13, 2015 9:04 PM, Pat Hayes <phayes@xxxxxxx> wrote: > > > > On Oct 13, 2015, at 10:53 AM, Thomas Johnston <tmj44p@xxxxxxx> wrote: > > > Oct 13, 2017. > > > > My intuitions tell me that anyone who asserts "All dogs are renates" believes that there are dogs (i.e. is ontologically committed to the existence of dogs) just as much as someone who asserts "Some dogs are friendly". > > I think your intuition needs some pumping with more examples. Try these: > > All unicorns are imaginary. > All large unicorns are male. > All composite prime numbers are larger than 13. > > Your intuition has some very strange consequences. You claim that (Ux Px -> Qx) entails (Ex Px). But the first is equivalent to (Ux. ~Qx -> ~Px), so it must also entail (Ex ~Qx) So "All dogs are renates" entails the existence of some non-renates. But if so, then "All dogs are real entities" (or some other vacuously true property in place of Q), must entail that some non-real entities exist, which is false. So we can derive a falsehood (perhaps necessarily false) from a truth (perhaps a necessary truth), using your intuitions as a guide. > > > Suppose someone else asserts, instead, that "No dogs are renates". Certainly, to do that, that person must believe that there are such things as dogs > > ?? Of course not. For example: "No blue rainbows have gold highlights." Which, by the way, I believe and am quite sure is true, precisely *because* there are no blue rainbows. Or, a more realistic example, one that actually does arise in some conversations here in the deep south, "No spirit guide will cause you harm." > > > and, in addition, believe that some of them are not renates (a false belief, of course). > > > > Now for "Some dogs are friendly", and also "Some dogs are not friendly". In both cases, we all seem to agree, someone making those assertions believes that there are dogs. > > > > Now I'm quite happy about all this. If I make a Gricean-rule serious assertion by using either the "All" quantification or the "Some" quantification, I'm talking about whatever is the subject term in those quantifications – dogs in this case. I'm particularly happy that negation, as it appears in the deMorgan's translations between "All" statements and "Some" statements, doesn't claim that a pair of statements are semantically equivalent, in which one of the pair expresses a belief that dogs exist but the other does not. > > > > But in the standard interpretation of predicate logic, that is the interpretation. In the standard interpretation, negating a statement creates or removes the _expression_ of a belief that something exists. > > Well, negating the statement expressing that belief yields another statement denying that belief. Why would anyone expect otherwise? Surely that is the whole point of negation, that not-P expresses the exact opposite of what is expressed by P, so they cannot both be true. > > > My beliefs in what exist can't be changed by the use of the negation operator. > > So if you say "Foos exist", and I respond, disagreeing with you, "There are no foos", then we are in fact agreeing with one another! Do you really find this a reasonable interpretation? If you do, then what could I possibly say, in order to disagree with you about such a claim of existence? > > > Apparently, John's beliefs can, and so too for everyone else who feels comfortable with predicate logic as a formalization of commonsense reasoning, and with the interpretation of one of its operators as "There exists ....". > > > > I usually don't like getting into tit for tats. Those kinds of discussions always are about trees, and take attention away from the forest. But I'll make exceptions when I think it's worth taking that risk (as I did in my response to Ed last night). > > > > So: > > > > From John Sowa's Oct 12th response: > > <<< > > TJ > > > why, in the formalization of predicate logic, was it decided > > > that "Some X" would carry ontological commitment > > > > Nobody made that decision. It's a fact of perception. > > I wish John had not mentioned perception here, as it muddies the discussion with irrelevant ideas. It is not a fact of perception. but a fact of the truth-conditions of the sentences involved. You may cite medieval scholars as much as you like, but I would be more impressed by a brief account of what you take the truth-conditions of a sentence of the form (Ux Px -> Qx) to actually be, and show us how this will entail Ex Px. > > > Every > > observation can always be described with just two operators: > > existential quantifier and conjunction. No other operators can > > be observed. They can only be inferred. > > >>> > > (1) If all ontological commitments have to be based on direct observation, then we're right back to the Vienna Circle and A. J. Ayer. > > > > (2) And what is it that we directly observe? A dog in front of me? Dogs, as Quine once pointed out, are ontological posits on a par with the Greek gods, or with disease-causing demons. (I am aware that this point, in particular, will likely serve to reinforce the belief, on the part of many engineering types in this forum, that philosophy has nothing to do with ontology engineering. That's something I want to discuss in a "contextualizing discussion" I want to have before I pester the members of this forum with questions and hypotheses about cognitive/diachronic semantics. What does talk like that have to do with building real-world ontologies in ontology tools, in OWL/RDF – ontologies that actually do something useful in the world? > > > > (3) I wouldn't talk about some dogs unless I believed that some dogs exist. > > Suppose you believe that dogs do not exist, ie that there are no dogs. And you wish to say this to someone, perhaps to enlighten them about the true nature of their animal pet. What will you say? You have to say something like "There are no dogs", or "Nothing is a dog". Rendered into logic, you have to say Ux.~Dx or ~Ex.Dx. Either way, you have to talk about dogs, in order to deny their existence. So someone might well want to talk about dogs - perhaps it would be better to say, to use dog language - when they do not believe that dogs exist. > > > And if some dogs exist, then all dogs do, too. > > Clearly this is false. I had a dog once, called Sally. Sally existed. On the other hand, the Hound of the Baskervilles was an imaginary dog. That dog did not exist. Similarly Rin-Tin-Tin was a fictional dog that did not exist. > > > Either there are dogs, or there aren't. If there are, then I can talk about some of them, or about all of them. If there aren't, then unless I am explicitly talking about non-existent things, I can't talk about some of them nor can I talk about all of them, for the simple reason that none of them exist. To repeat myself: if any of them exist, then all of them do. > > > > (4) And I am, of course, completely aware that trained logicians since Frege have been using predicate logic, and that, at least since deMorgan, have been importing to negation the power to create and remove ontological commitment. > > > > (5) Here's a quote from Paul Vincent Spade (very important guy in medieval logic and semantics): > > > > "This doctrine of “existential import” has taken a lot of silly abuse in the twentieth century. As you may know, the modern reading of universal affirmatives construes them as quantified material conditionals. Thus ‘Every S is P’ becomes (x)(Sx ⊃ Px), and is true, not false, if there are no S’s. Hence (x)(Sx ⊃ Px) does not imply (∃x)(Sx). And that is somehow supposed to show the failure of existential import. But it doesn’t show anything of the sort .... " > > http://pvspade.com/Logic/docs/Thoughts,%20Words%20and%20Things1_2.pdf > > It is worth reading the rest of that footnote. He agrees that (x)(Sx ⊃ Px) does not imply (∃x)(Sx), but points out that (Ux)(Px) implies (Ex)(Px), and that *this* is the real existential import of modern logic. > > "The modern equivalent of existential import, therefore, is not: (x)(Sx ⊃ Px) ∴ (∃x)(Sx), but rather (x)(Px) ∴ (∃x)(Px). And that holds in standard modern logic, which is therefore just as much committed to existential import as traditional logic is." > > Perfectly correct, but has no bearing on the issue you are raising here. > > > > > So Spade approaches this as the issue of the existential import of universally quantified statements. He points out that, from Ux(Dx --> Rx), we cannot infer Ex(Dx & Rx). The rest of the passage attempts to explain why. I still either don't understand his argument, or I'm not convinced by it. Why should "All dogs are renates" not be expressed as Ux(Dx & Rx)? > > Because that would then also express "All renates are dogs", by the symmetry of conjunction, and would entail "Everything is a dog", by &-elimination. > > Best wishes > > Pat Hayes > > PS there is a wonderful extended essay here on this general topic: http://plato.stanford.edu/entries/ontological-commitment/ > > > > From John's reply, I think he would say that it's because we can only observe particular things; we can't observe all things. But in the preceding points, I've tried to say why I don't find that convincing. > > > > (6) Simply the fact that decades of logicians have not raised the concerns I have raised strongly suggests that I am mistaken, and need to think more clearly about logic and ontological commitment. But there is something that might make one hesitate to jump right to that conclusion. It's Kripke's position on analytic a posteriori statements (which I have difficulty distinguishing from Kant's synthetic a priori statements, actually -- providing we assume that the metaphors of "analytic" as finding that one thing is "contained in" another thing, and of "synthetic" as bringing together two things first experienced as distinct, are just metaphors, and don't work as solid explanations). > > > > All analytic statements are "All" statements, not "Some" statements. Kripke suggests that the statement "Water is H2O" is analytic but a posteriori. In general, that "natural kind" statements are all of this sort. Well, a posteriori statements are ones verified by experience, and so that would take care of John's Peircean point that only "Some" statements are grounded in what we experience. > > > > I don't know how solid this line of thought is. But if there is something to it, that might suggest that if we accept Kripke's whole referential semantics / rigid designator / natural kinds ideas (cf. Putnam's twin earth thought experiment also), then perhaps we should rethink the traditional metalogical interpretation of "All dogs are renates" as Ux(Dx --> Rx), and consider, instead, Ux(Dx & Rx). > > > > Well, two summing-up points. The first is that Paul Vincent Spade thinks that my position is "silly", and John Sowa thinks that it's at least wrong. The second is that such discussions do indeed take us beyond the concerns of ontology engineers, who just want to get on with building working ontologies. > > > > As I said above, I will address those concerns of ontology engineers before I begin discussing cognitive semantics in this Ontolog (Ontology + Logic) forum. > > > > Regards to all, > > > > Tom > > > > > > > > > > > > On Monday, October 12, 2015 10:49 PM, John F Sowa <sowa@xxxxxxxxxxx> wrote: > > > > > > Tom, Ed, Leo, Paul, Henson, > > > > TJ > > > why, in the formalization of predicate logic, was it decided > > > that "Some X" would carry ontological commitment > > > > Nobody made that decision. It's a fact of perception. Every > > observation can always be described with just two operators: > > existential quantifier and conjunction. No other operators can > > be observed. They can only be inferred. > > > > EJB > > > I was taught formal logic as a mathematical discipline, not > > > a philosophical discipline. I do not believe that mathematics > > > has any interest in ontological commitment. > > > > That's true. And most of the people who developed formal logic > > in the 20th c were mathematicians. They didn't worry about > > the source or reliability of the starting axioms. > > > > Leo > > > most ontologists of the realist persuasion will argue that there > > > are no negated/negative ontological things. > > > > Whatever their persuasion, nobody can observe a negation. It's > > always an inference or an assumption. > > > > PT > > > on the inadequacy of mathematical logic for reasoning about > > > the real world, see Veatch, "Intentional Logic: a logic based on > > > philosophical realism". > > > > Many different logics can be and have been formalized for various > > purposes. They may have different ontological commitments built in, > > but the distinction of what is observed or inferred is critical. > > > > HG > > > I keep wondering if this forum has anything useful to offer the > > > science and engineering community. > > > > C. S. Peirce was deeply involved in experimental physics and > > engineering. He was also employed as an associate editor of the > > _Century Dictionary_, for which he wrote, revised, or edited over > > 16,000 definitions. My comments below are based on CSP's writings: > > > > 1. Any sensory perception is evidence that something exists; > > a simultaneous perception of something A and something B > > is evidence for (Ex)(Ey)(A(x) & B(y)). > > > > 2. Evidence for other operators must *always* be an inference: > > > > (a) Failure to observe P(x) does not mean there is no P. > > > > Example: "There is no hippopotamus in this room" > > can only be inferred iff you have failed to observe > > a hippo and know that it is big enough that you would > > certainly have noticed one if it were present. > > > > (b) (p or q) cannot be directly observed. But you might infer > > that a particular observation (e.g. "the room is lighted") > > could be the result of two or more sources. > > > > (c) (p implies q) cannot be observed, as Hume discussed at length. > > > > (d) a universal quantifier can never be observed. No matter > > how many examples of P(x) you see, you can never know that > > you've seen them all (unless you have other information > > that guarantees you have seen them all). > > > > TJ > > > But now notice something: negation creates and removes ontological > > > commitment. And this seems really strange. Why should negation do this? > > > > The commitment is derived from the same background knowledge that > > enabled you to assert (or prevented you from asserting) the negation. > > > > > I'd also like to know if there are formal logics which do not > > > impute this extravagant power of ontological commitment / > > > de-commitment to the negation operator in predicate logics. > > > > Most formal logicians don't think about these issues -- for the > > simple reason that most of them are mathematicians. They don't > > think about observation and evidence. > > > > CSP realized the problematical issues with negation, but he also > > knew that he needed to assume at least one additional operator. > > And negation was the simplest of the lot. Those are the three > > he assumed for his existential graphs. (But he later added > > metalanguage, modality, and three values -- T, F, and Unknown.) > > > > John > > > > PS: The example "There is no hippopotamus in this room" came from > > a remark by Bertrand Russell that he couldn't convince Wittgenstein > > that there was no hippopotamus in the room. Russell didn't go > > into any detail, but I suspect that Ludwig W. was trying to > > explain the point that a negation cannot be observed. > > > > > > _________________________________________________________________ > > Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/ > > Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/ > > Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx > > Shared Files: http://ontolog.cim3.net/file/ > > Community Wiki: http://ontolog.cim3.net/wiki/ > > To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J > > > > > > > > > > _________________________________________________________________ > > Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/ > > Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/ > > Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx > > Shared Files: http://ontolog.cim3.net/file/ > > Community Wiki: http://ontolog.cim3.net/wiki/ > > To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J > > > ------------------------------------------------------------ > IHMC (850)434 8903 home > 40 South Alcaniz St. (850)202 4416 office > Pensacola (850)202 4440 fax > FL 32502 (850)291 0667 mobile (preferred) > phayes@xxxxxxx http://www.ihmc.us/users/phayes > > > > > > > > ------------------------------------------------------------ IHMC (850)434 8903 home 40 South Alcaniz St. (850)202 4416 office Pensacola (850)202 4440 fax FL 32502 (850)291 0667 mobile (preferred) phayes@xxxxxxx http://www.ihmc.us/users/phayes _________________________________________________________________ Message Archives: http://ontolog.cim3.net/forum/ontolog-forum/ Config Subscr: http://ontolog.cim3.net/mailman/listinfo/ontolog-forum/ Unsubscribe: mailto:ontolog-forum-leave@xxxxxxxxxxxxxxxx Shared Files: http://ontolog.cim3.net/file/ Community Wiki: http://ontolog.cim3.net/wiki/ To join: http://ontolog.cim3.net/cgi-bin/wiki.pl?WikiHomePage#nid1J (01) |
<Prev in Thread] | Current Thread | [Next in Thread> |
---|---|---|
Previous by Date: | Re: [ontolog-forum] A Question About Logic, Pat Hayes |
---|---|
Next by Date: | Re: [ontolog-forum] A Question About Mathematical Logic, Thomas Johnston |
Previous by Thread: | Re: [ontolog-forum] ontolog-forum Digest, Vol 154, Issue 38, Paul Warren |
Indexes: | [Date] [Thread] [Top] [All Lists] |