About this resource (33YM)
This Recommended Reading list is a work in progress and will evolve over the course of OntologySummit2012 from community input. (33Y6)
Experimentally, references suggested by the community will be added to an online library, hosted at Zotero.org and belonging to the OntologySummit2012 Zotero Group. The group home page is at https://www.zotero.org/groups/ontologysummit2012. The Library view, best for viewing the items in Track-aligned collections and subcollections, is accessible directly at https://www.zotero.org/groups/ontologysummit2012/items/collectionKey/CMDDWSCG. This group library is viewable by anyone (public), editable by any member of the group. If you are a summit participant, are not yet a group member, and would like to be one, please send an email message, including the email address at which you'd prefer to receive an invitation to join the group, to amanda-dot-vizedom-at-gmail-dot-com. (33Y7)
All summit members are invited and encouraged to contribute to the group library directly. However, no one is required to do so in order to see or contribute recommended readings. For convenience, especially of those who prefer not to use a separate tool, text bibliographies will be exported regularly and updated here. Other formats, including metadata-rich formats for use with other tools, can also be exported from Zotero. If you have a particular format request, please let us know and we'll try to include it in the regular export routine. (33Y8)
[Note: Beyond contributing, as all are encouraged to do, some additional-responsibility volunteers would be most welcome. The exporting task can probably be done more smoothly and effectively by someone with more tool and/or digital curation experience. Transferring references from summit email and chat, when the suggester doesn't wish to add them directly, could use an extra hand or two -AmandaVizedom] (3420)
Bibliographies of Recommend Reading (33YN)
Most recent export: 2012.02.01 (3421)
Track-1&2: Ontology for Big Systems and Systems Engineering (33YB)
[1] C. Partridge, What is Pump Facility PF101? A Study in Ontology. LADSEB-CNR, Jun-2002. (38M8)
[2]VW Factory - Germany. 2009. (38M9)
[3] M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, and others, Ultra-Large-Scale Systems: The Software Challene of the Future 2006, 2008. (38MA)
[4]The pupose of a system is what it does. [Online]. Available: http://en.wikipedia.org/wiki/POSIWID. (38MB)
[5] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino, Social roles and their descriptions, Procs. of KR04, pp. 267277, 2004. (38MC)
[6] Semat, SEMAT: Software Engineering Method and Theory, Software Engineering Method and Theory. [Online]. Available: www.semat.org. (38MD)
[7] A. Sheth, Semantics Scales Up: Beyond Search in Web 3.0, Internet Computing, IEEE, vol. 15, no. 6, pp. 36, 2011. (38ME)
[8] E. W. Dijkstra, Self stabilizing systems in spite of distributed control, CACM, vol. 17, no. 11, pp. 643644, 1974. (38MF)
[9] C. Masolo, G. Guizzardi, L. Vieu, E. Bottazzi, and R. Ferrario, Relational roles and qua-individuals, in Procs. of AAAI Fall Symposium Roles, 2005, vol. 5. (38MG)
[10] C. Bock, X. Zha, H. Suh, and J. Lee, Ontological Product Modeling for Collaborative Design. 11-Dec-2008. (38MH)
[11] I.-I. O. for Standardization, ISO 10303-214:2010 Industrial automation systems and integration -- Product data representation and exchange -- Part 214: Application protocol: Core data for automotive mechanical design processes. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43669. [Accessed: 26-Jan-2012]. (38MI)
[12] I.-I. O. for Standardization, ISO - International Organization for Standardization. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43669. [Accessed: 01-Feb-2012]. (38MJ)
[13] E. Bottazzi and R. Ferrario, Introducing Perspectiles in Organizations. (38MK)
[14] H. Teijgeler, Functional and Physical Objects - the big picture. [Online]. Available: http://15926.info/functional-physical-object/index.htm. (38ML)
[15] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein, Cognitive systems engineering. Wiley, 1994. (38MM)
[16] C. Bock, Bock Online, Advanced Information Modeling and Ontology. [Online]. Available: http://conradbock.org/. [Accessed: 07-Mar-2012]. (38MN)
[17] Guarino, N., Artefactual Kinds, Functional Parts, and Functional Roles. . (38MO)
[18] H. S. Low, C. J. O. Baker, A. Garcia, and M. R. Wenk, An OWL-DL Ontology for Classification of Lipids, ICBO: International Conference on Biomedical Ontology, July 24-26, 2009, 2009. (38MP)
Representing Systems (38MQ)
[1] C. Partridge, What is Pump Facility PF101? A Study in Ontology. LADSEB-CNR, Jun-2002. (38MR)
[2] J. F. Sowa, Ontology, Ontology. [Online]. Available: http://www.jfsowa.com/ontology/. (38MS)
[3] S. Borgo, R. Mizoguchi, and B. Smith, On the ontology of functions, Applied Ontology, vol. 6, no. 2, pp. 99104, 2011. (38MT)
[4] J. F. Sowa, Knowledge representation : logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole, 2000. (38MU)
[5] M. West, EPISTLE: Developing High Quality Data Models, Version 2.0, Issue 2.1. European Process Industries STEP Technical Liason Executive, Mar-1996. (38MV)
[6] M. West, Developing high quality data models. Burlington, MA: Morgan Kaufmann, 2011. (38MW)
[7] W. Gielingh, A theory for the modelling of complex and dynamic systems, ITcon, vol. 13, pp. 421475, 2008. (38MX)
Track-3: Challenge: ontology and big data (33YD)
[1] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein, Cognitive systems engineering. Wiley, 1994. (3428)
[2] C. Partridge, ladseb_t_r_04-02.pdf. Jun-2002. (3429)
[3] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino, Social roles and their descriptions, Procs. of KR04, pp. 267277, 2004. (342A)
[4] C. Masolo, G. Guizzardi, L. Vieu, E. Bottazzi, and R. Ferrario, Relational roles and qua-individuals, in Procs. of AAAI Fall Symposium Roles, 2005, vol. 5. (342B)
[5] H. S. Low, C. J. O. Baker, A. Garcia, and M. R. Wenk, An OWL-DL Ontology for Classification of Lipids, ICBO: International Conference on Biomedical Ontology, July 24-26, 2009, 2009. (342C)
[6] Guarino, N., Artefactual Kinds, Functional Parts, and Functional Roles. . (342D)
[7] W. Gielingh, A theory for the modelling of complex and dynamic systems, ITcon, vol. 13, pp. 421475, 2008. (342E)
[8] M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, and others, Ultra-Large-Scale Systems: The Software Challene of the Future 2006, 2008. (342F)
[9] E. Bottazzi and R. Ferrario, Introducing Perspectiles in Organizations. (342G)
[10]The pupose of a system is what it does. [Online]. Available: http://en.wikipedia.org/wiki/POSIWID. (342H)
[11] H. Teijgeler, Functional and Physical Objects - the big picture. [Online]. Available: http://15926.info/functional-physical-object/index.htm. (342I)
[12] I.-I. O. for Standardization, ISO - International Organization for Standardization. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43669. [Accessed: 01-Feb-2012]. (342J)
[13] Semat, SEMAT: Software Engineering Method and Theory. [Online]. Available: www.semat.org. (342K)
[14] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein, Cognitive systems engineering. Wiley, 1994. (342L)
[15] E. W. Dijkstra, Self stabilizing systems in spite of distributed control, CACM, vol. 17, no. 11, pp. 643-644, 1974. (342M)
[16]VW Factory - Germany. 2009. (342N)
[17] S. Borgo, R. Mizoguchi, and B. Smith, On the ontology of functions, Applied Ontology, vol. 6, no. 2, pp. 99104, 2011. (342O)
[18] I.-I. O. for Standardization, ISO 10303-214:2010 Industrial automation systems and integration -- Product data representation and exchange -- Part 214: Application protocol: Core data for automotive mechanical design processes. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43669. [Accessed: 26-Jan-2012]. (3422)
Track-4: Large-scale domain applications (33YF)
CUAHSI project (38MY)
Data One (38MZ)
Data.uk (38N0)
DoD Enterprise Information Web (EIW) (38N1)
Financial Institution Use Case (38N2)
IBM Use Case (38N3)
iPlant (38N4)
Norwegian Oil and Gas Enterprise System (38N5)
Smart Cities (3423)
Smart Grid (38N6)
[1] A. Crapo, K. Griffith, A. Khandelwal, J. Lizzi, A. Moitra, and X. Wang, Overcoming Challenges Using the CIM as a Semantic Model for Energy Applications, in Grid-Interop Forum, GridWise Architecture Council, 2010. (38N7)
Cross-Track-A1: Ontology Quality and Large-Scale Systems (33YH)
[1] M. Annamalai and H. R. Mohseni, Visualisation Support for the Protégé Ontology Competency Question Based Conceptual-Relationship Tracer, in Informatics Engineering and Information Science, vol. 253, A. Abd Manaf, S. Sahibuddin, R. Ahmad, S. Mohd Daud, and E. El-Qawasmeh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 161173. (38N8)
[2] N. F. Noy, R. Guha, and M. A. Musen, User ratings of ontologies: Who will rate the raters, in Proc. of the AAAI 2005 Spring Symposium on Knowledge Collection from Volunteer Contributors, Stanford, CA, 2005. (38N9)
[3] D. L. McGuinness and P. F. Patel-Schneider, Usability issues in knowledge representation systems, in PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL IN℡LIGENCE, 1998, pp. 608614. (38NA)
[4] N. Sugiura, Y. Shigeta, N. Fukuta, N. Izumi, and T. Yamaguchi, Towards On-the-fly Ontology ConstructionFocusing on Ontology Quality Improvement, The Semantic Web: Research and Applications, pp. 115, 2004. (38NB)
[5] G. Maiga, Towards a Reusable Evaluation Framework for Ontology based biomedical Systems Integration, Strengthening the Role of ICT in Development, p. 215, 2007. (38NC)
[6] N. S. Friedland, P. G. Allen, M. Witbrock, G. Matthews, N. Salay, P. Miraglia, J. Angele, S. Staab, D. Israel, V. Chaudhri, and others, Towards a quantitative, platform-independent analysis of knowledge systems, in Proc. Intl Conf. Principles of Knowledge Representation, 2004, pp. 507514. (38ND)
[7] A. D. Mihiş, The Evaluation of Ontology Matching versus Text, Informatica Economică/Economy Informatics, Categ. CNCSIS B, vol. 14, no. 4, pp. 147155, 2010. (38NE)
[8] L. Obrst, W. Ceusters, I. Mani, S. Ray, and B. Smith, The evaluation of ontologies, Semantic Web, pp. 139158, 2007. (38NF)
[9] K. B. Cohen, C. Roeder, W. A. Baumgartner Jr, L. E. Hunter, and K. Verspoor, Test suite design for ontology concept recognition systems, 2010. (38NG)
[10] J. Lubell, S. Rachuri, M. Mani, and E. Subrahmanian, Sustaining engineering informatics: Toward methods and metrics for digital curation, International Journal of Digital Curation, vol. 3, no. 2, 2008. (38NH)
[11] A. Gómez-Pérez, Some ideas and examples to evaluate ontologies, in Artificial Intelligence for Applications, 1995. Proceedings., 11th Conference on, 1995, pp. 299305. (38NI)
[12] K. Janowicz, P. Maué, M. Wilkes, S. Schade, F. Scherer, M. Braun, S. Dupke, and W. Kuhn, Similarity as a Quality Indicator in Ontology Engineering, in Proceedings of the 2008 conference on Formal Ontology in Information Systems: Proceedings of the Fifth International Conference (FOIS 2008), Amsterdam, The Netherlands, The Netherlands, 2008, pp. 92105. (38NJ)
[13] J. Tane, P. Cimiano, and P. Hitzler, Query-based multicontexts for knowledge base browsing: An evaluation, Conceptual Structures: Inspiration and Application, pp. 413426, 2006. (38NK)
[14] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri, Quantitative and qualitative evaluation of the OntoLearn ontology learning system, in Proceedings of the 20th international conference on Computational Linguistics, 2004, p. 1043. (38NL)
[15] J. Köhler, K. Munn, A. Rüegg, A. Skusa, and B. Smith, Quality control for terms and definitions in ontologies and taxonomies, BMC Bioinformatics, vol. 7, p. 212, 2006. (38NM)
[16] J. E. Rogers, Quality assurance of medical ontologies, Methods Inf Med, vol. 45, no. 3, pp. 267274, 2006. (38NN)
[17] A. G. C. C. M. Ciaramita and J. Lehmann, Qood grid: A metaontology-based framework for ontology evaluation and selection. (38NO)
[18] L. Obrst, T. Hughes, S. Ray, and M. C. M. VA, Prospects and Possibilities for Ontology Evaluation: The View from NCOR., presented at the WWW 2006, Edinburgh, UK, 2006. (38NP)
[19] D. Sathya and K. R. Uthayan, Proposal for semantic metric to assess the quality of ontologies, in 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), 2011, pp. 754756. (38NQ)
[20] D. L. McGuinness, L. Ding, P. P. Da Silva, and C. Chang, Pml 2: A modular explanation interlingua, in Proceedings of AAAI, 2007, vol. 7. (38NR)
[21] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang, and C. Wroe, OWL pizzas: Practical experience of teaching OWL-DL: Common errors & common patterns, Engineering Knowledge in the Age of the Semantic Web, pp. 6381, 2004. (38NS)
[22] M. Poveda-Villalon and M. C. Suárez-Figueroa, OOPS!OntOlogy Pitfalls Scanner!, 2012. (38NT)
[23] S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B. Aleman-Meza, OntoQA: Metric-based ontology quality analysis, in IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, 2005, vol. 9. (38NU)
[24] A. Lozano-Tello and A. Gómez-Pérez, Ontometric: A method to choose the appropriate ontology, Journal of Database Management, vol. 2, no. 15, pp. 118, 2004. (38NV)
[25] P. Alani, Harith and Brewster, Christopher, Ontology Ranking based on the Analysis of Concept Structures, in IUI 02: 2002 International Conference on Intelligent User Interfaces, San Francisco, California, USA, January 13-16, 2002, Banff, Alberta, Canada, 2002, p. 198. (38NW)
[26] K. Verspoor, D. Dvorkin, K. B. Cohen, and L. Hunter, Ontology quality assurance through analysis of term transformations, Bioinformatics, vol. 25, no. 12, p. i77, 2009. (38NX)
[27] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann, R. Gil, F. Bolici, and O. Strignano, Ontology evaluation and validation, Citeseer, 2005. (38NY)
[28] D. Vrandečić, Ontology Evaluation, in Handbook on Ontologies, S. Staab and R. Studer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 293313. (38NZ)
[29] M. Poveda, M. C. Suarez-Figueroa, and A. Gómez-Pérez, Ontology Analysis Based on Ontology Design Patterns. . (38O0)
[30] M. Uschold and M. Gruninger, Ontologies: Principles, methods and applications, Knowledge engineering review, vol. 11, no. 2, pp. 93136, 1996. (38O1)
[31] S. Tartir, I. B. Arpinar, and A. P. Sheth, Ontological Evaluation and Validation, in Theory and Applications of Ontology: Computer Applications, R. Poli, M. Healy, and A. Kameas, Eds. Dordrecht: Springer Netherlands, 2010, pp. 115130. (38O2)
[32] C. Patel, K. Supekar, Y. Lee, and E. Park, OntoKhoj: a semantic web portal for ontology searching, ranking and classification, in Proceedings of the 5th ACM international workshop on Web information and data management, 2003, pp. 5861. (38O3)
[33] K. Dellschaft and S. Staab, On how to perform a gold standard based evaluation of ontology learning, The Semantic Web-ISWC 2006, pp. 228241, 2006. (38O4)
[34] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann, Modelling Ontology Evaluation and Validation, in The Semantic Web: Research and Applications, vol. 4011, Y. Sure and J. Domingue, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 140154. (38O5)
[35] H. Alani and C. Brewster, Metrics for ranking ontologies, 2006. (38O6)
[36] M. Annamalai and Hamid Reza Mohseni, Jambalaya: The closest visualisation fit for the protégé ontology conceptual-relationship tracer, in 2010 International Conference on Science and Social Research (CSSR), 2010, pp. 201206. (38O7)
[37] Y. Kalfoglou and B. Hu, Issues with evaluating and using publicly available ontologies, in Proceedings 4th International EON Workshop, Evaluating Ontologies for the Web, 2006. (38O8)
[38] S. Kohler, S. Bauer, C. Mungall, G. Carletti, C. Smith, P. Schofield, G. Gkoutos, and P. Robinson, Improving ontologies by automatic reasoning and evaluation of logical definitions, BMC bioinformatics, vol. 12, no. 1, p. 418, 2011. (38O9)
[39] M. Suárez-Figueroa, A. Gómez-Pérez, and B. Villazón-Terrazas, How to write and use the Ontology Requirements Specification Document, On the Move to Meaningful Internet Systems: OTM 2009, pp. 966982, 2009. (38OA)
[40] D. Vrandečić and Y. Sure, How to design better ontology metrics, The Semantic Web: Research and Applications, pp. 311325, 2007. (38OB)
[41] P. Velardi, R. Navigli, A. Cuchiarelli, and R. Neri, Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies, Ontology Learning from Text: Methods, evaluation and applications, pp. 92106, 2005. (38OC)
[42] J. Park, W. Cho, and S. Rho, Evaluation Framework for Automatic Ontology Extraction Tools: An Experiment, in On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, vol. 4805, R. Meersman, Z. Tari, and P. Herrero, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 511521. (38OD)
[43] N. Guarino and C. Welty, Evaluating ontological decisions with OntoClean, Communications of the ACM, vol. 45, no. 2, pp. 6165, 2002. (38OE)
[44] M. C. Suárez-Figueroa, R. García-Castro, B. Villazón-Terrazas, and A. Gómez-Pérez, Essentials In Ontology Engineering: Methodologies, Languages, And Tools, 2011. (38OF)
[45] J. Luciano and R. Stevens, e-Science and biological pathway semantics, BMC bioinformatics, vol. 8, no. Suppl 3, p. S3, 2007. (38OG)
[46] M. West, EPISTLE: Developing High Quality Data Models, Version 2.0, Issue 2.1. European Process Industries STEP Technical Liason Executive, Mar-1996. (38OH)
[47] P. R. Cohen, Empirical methods for artificial intelligence. Cambridge, Mass.: MIT Press, 1995. (38OI)
[48] P. R. Cohen, Empirical methods for artificial intelligence, 2008. (38OJ)
[49] J. Ashraf and M. Hadzic, Domain Ontology Usage Analysis Framework, in 2011 Seventh International Conference on Semantics Knowledge and Grid (SKG), Beijing, China, 2011, pp. 7582. (38OK)
[50] C. (Jennifer) Fang, Developing an Ontology Evaluation Methodology: Cognitive Measure of Quality, 23-Apr-2009. [Online]. Available: http://researcharchive.vuw.ac.nz/handle/10063/889. [Accessed: 15-Feb-2012]. (38OL)
[51] C. J. Fang, Developing an Ontology Evaluation Methodology: Cognitive Measure of Quality, Awarded Research Masters Thesis, Victoria University of Wellington, 2009. (38OM)
[52] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks, Data driven ontology evaluation, 2004. (38ON)
[53] P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris, D2. 2.1 Specification of a common framework for characterizing alignment, 2004. (38OO)
[54] A. Hicks and A. Herold, Cross-Lingual Evaluation of Ontologies with Rudify, in Knowledge Discovery, Knowlege Engineering and Knowledge Management, vol. 128, A. Fred, J. L. G. Dietz, K. Liu, and J. Filipe, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 151163. (38OP)
[55] F. Neuhaus, E. Florescu, A. Galton, M. Gruninger, N. Guarino, L. Obrst, A. Sanchez, A. Vizedom, P. Yim, and B. Smith, Creating the ontologists of the future, Applied Ontology, vol. 6, no. 1, pp. 9198, 2011. (38OQ)
[56] M. Fernández, I. Cantador, and P. Castells, CORE: A tool for collaborative ontology reuse and evaluation, 2006. (38OR)
[57] R. Navigli, Consistent validation of manual and automatic sense annotations with the aid of semantic graphs, Computational Linguistics, vol. 32, no. 2, pp. 273281, 2006. (38OS)
[58] H. Yao, A. M. Orme, and L. Etzkorn, Cohesion metrics for ontology design and application, Journal of Computer science, vol. 1, no. 1, pp. 107113, 2005. (38OT)
[59] L. Yao, A. Divoli, I. Mayzus, J. A. Evans, and A. Rzhetsky, Benchmarking ontologies: bigger or better?, PLoS computational biology, vol. 7, no. 1, p. e1001055, 2011. (38OU)
[60] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri, Automatic ontology learning: Supporting a per-concept evaluation by domain experts, in Workshop on Ontology Learning and Population (ECAI 2004), Valencia, Spain, 2004. (38OV)
[61] N. Guarino and C. A. Welty, An overview of OntoClean, Handbook on ontologies, pp. 201220, 2009. (38OW)
[62] B. Smith, Against Idiosyncrasy in Ontology Development, in Formal ontology in information systems: proceedings of the Fourth International Conference (FOIS 2006), Baltimore, MD, 2006, vol. 150, pp. 1526. (38OX)
[63] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann, A theoretical framework for ontology evaluation and validation, in Semantic Web Applications and Perspectives (SWAP)2nd Italian Semantic Web Workshop, 2005. (38OY)
[64] W. Ceusters, B. Smith, and L. Goldberg, A terminological and ontological analysis of the NCI Thesaurus, Methods of Information in Medicine, vol. 44, no. 4, p. 498, 2005. (38OZ)
[65] J. García, F. J. García-Peñalvo, and R. Therón, A Survey on Ontology Metrics, in Knowledge Management, Information Systems, E-Learning, and Sustainability Research, vol. 111, M. D. Lytras, P. Ordonez De Pablos, A. Ziderman, A. Roulstone, H. Maurer, and J. B. Imber, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 2227. (38P0)
[66] J. Brank, M. Grobelnik, and D. Mladenić, A survey of ontology evaluation techniques, in Proceedings of the Conference on Data Mining and Data Warehouses SiKDD 2005, 2005. (38P1)
[67] G. MAIGA and D. WILLIAMS, A Reference Model for Biomedical Ontology Evaluation: The Perspective of Granularity, International Journal of Computing and ICT Research, p. 35. (38P2)
[68] J. T. Fernandez-Breis, M. Egaña Aranguren, and R. Stevens, A Quality Evaluation Framework for Bio-Ontologies, Nature Precedings, Jul. 2009. (38P3)
[69] M. Ohta, K. Kozaki, and R. Mizoguchi, A Quality Assurance Framework for Ontology Construction and Refinement, in Advances in Intelligent Web Mastering 3, vol. 86, E. Mugellini, P. S. Szczepaniak, M. C. Pettenati, and M. Sokhn, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 207216. (38P4)
[70] M. B. Almeida, A proposal to evaluate ontology content, Applied Ontology, vol. 4, no. 3, pp. 245265, 2009. (38P5)
[71] Yinglong Ma, Xinyv Ma, Shaohua Liu, and Beihong Jin, A Proposal for Stable Semantic Metrics Based on Evolving Ontologies, in International Joint Conference on Artificial Intelligence, 2009. JCAI 09, 2009, pp. 136139. (38P6)
[72] C. Van Buggenhout and W. Ceusters, A novel view on information content of concepts in a large ontology and a view on the structure and the quality of the ontology, Int J Med Inform, vol. 74, no. 24, pp. 125132, Mar. 2005. (38P7)
[73] Z. Lu, Z. Miklós, L. He, S. Cai, and J. Gu, A novel multi-aspect consistency measurement for ontologies, J. Web Eng., vol. 10, no. 1, pp. 4869, Mar. 2011. (38P8)
[74] J. Pak and L. Zhou, A Framework for Ontology Evaluation, in Exploring the Grand Challenges for Next Generation E-Business, vol. 52, R. Sharman, H. R. Rao, and T. S. Raghu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1018. (38P9)
[75] G. Maiga and D. Williams, A Flexible Approach for User Evaluation of Biomedical Ontologies, International Journal of Computing and ICT Research, p. 62, 2008. (38PA)
[76] M. Poveda Villalon, M. C. Suárez-Figueroa, and A. Gómez-Pérez, A Double Classification of Common Pitfalls in Ontologies, 2010. (38PB)
[77] R. Hoehndorf, M. Dumontier, and G. V. Gkoutos, Towards quantitative measures in applied ontology, arXiv:1202.3602, Feb. 2012. (38RT)
Cross-Track-A2: Ontology and Federated Systems (33YJ)
[1] I.-I. O. for Standardization, ISO 15926-2:2003, Industrial automation systems and integration -- Integration of life-cycle data for process plants including oil and gas production facilities -- Part 2: Data model. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557. [Accessed: 01-Mar-2012]. (38LR)
[2] Fiatech, An Introduction to ISO 15926. Fiatech, Nov-2011. (38LS)
Related Topics and Background (33YL)
Agile Methods and XP (38LT)
[1] L. Williams, W. Krebs, L. Layman, A. Antón, and P. Abrahamsson, Toward a framework for evaluating extreme programming, in Proceedings of the Eighth International Conference on Empirical Assessment in Software Engineering (EASE 04), 2004, pp. 1120. (38PJ)
[2] A. Oram and G. Wilson, Making Software: What Really Works, and Why We Believe It, 1st ed. OReilly Media, 2010. (38PK)
[3] D. George, Agile Bibliography Wiki. [Online]. Available: http://biblio.gdinwiddie.com/. [Accessed: 06-Mar-2012]. (38PL)
[4] S. Van Baelen, A constraint-centric approach for object-oriented conceptual modelling, Katholieke Universiteit Leuven, Faculteit Wetenschappen & Ingenieurswetenschappen Arenbergkasteel,, Leuven, Belgium, 2007. (38PM)
Test Driven Development (38PN)
[1] J. S. Luciano, B. Andersson, C. Batchelor, O. Bodenreider, T. Clark, C. K. Denney, C. Domarew, T. Gambet, L. Harland, A. Jentzsch, and others, The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside, Journal of biomedical semantics, vol. 2, no. Suppl 2, p. S1, 2011. (38PO)
[2] Y. Zhang, Test-driven modeling for model-driven development, Software, IEEE, vol. 21, no. 5, pp. 8086, 2004. (38PP)
[3] D. Janzen and H. Saiedian, Test-driven development concepts, taxonomy, and future direction, Computer, vol. 38, no. 9, pp. 4350, 2005. (38PQ)
[4] R. Klischewski and S. Ukena, Test Strategies for Evaluation of Semantic eGovernment Applications, Electronic Government, pp. 291302, 2008. (38PR)
[5] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, Realizing quality improvement through test driven development: results and experiences of four industrial teams, Empirical Software Engineering, vol. 13, no. 3, pp. 289302, 2008. (38PS)
[6] V. Pammer, P. Scheir, and S. Lindstaedt, Ontology coverage check: support for evaluation in ontology engineering, in FOMI 2006. The 2nd workshop: Formal Ontologies Meet Industry, 2006. (38PT)
[7] M. Luczak-Rösch and R. Heese, Managing ontology lifecycles in corporate settings, Networked Knowledge-Networked Media, pp. 235248, 2009. (38PU)
[8] L. Layman, L. Williams, and L. Cunningham, Exploring extreme programming in context: An industrial case study, in Agile Development Conference, 2004, 2004, pp. 3241. (38PV)
[9] E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi, Experimenting with eXtreme design, Knowledge Engineering and Management by the Masses, pp. 120134, 2010. (38PW)
[10] T. Bhat and N. Nagappan, Evaluating the efficacy of test-driven development: industrial case studies, in Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, 2006, pp. 356363. (38PX)
[11] G. Bucci, V. Sandrucci, and E. Vicario, An ontological sw architecture supporting agile development of semantic portals, Software and Data Technologies, pp. 185200, 2009. (38PY)
[12] M. Siniaalto, Agile Software Development of Embedded Systems Version: 1.0 Date: 2006.03. 03, ITEA, Deliverable D.2.7, 2006. (38PZ)
Big Data (38LU)
[1] E. Dumbill, Planning for Big Data. OReilly Media, 2012. (38Q0)
[2] M. van S. Sam Madden, Internet-Scale Data Management, http://www.computer.org/. [Online]. Available: http://www.computer.org/csdl/mags/ic/2012/01/mic2012010010.html. [Accessed: 15-Feb-2012]. (38Q1)
Controlled Vocabularies (38LV)
[1] E. Svenonius, Unanswered questions in the design of controlled vocabularies, Journal of the American Society for Information Science, vol. 37, no. 5, pp. 331340, 1986. (38Q2)
[2] X. Ochoa and E. Duval, Towards Automatic Evaluation of Metadata Quality in Digital Repositories. (38Q3)
[3] M. A. Riesland, Tools of the trade: vocabulary management software, Cataloging & Classification Quarterly, vol. 37, no. 3/4, pp. 155176, 2004. (38Q4)
[4] L. M. Chan, P. A. Richmond, and E. Svenonius, Theory of subject analysis: a sourcebook. Libraries Unlimited, 1985. (38Q5)
[5] E. Svenonius, The Intellectual Foundation of Information Organization. Cambridge, Mass.: MIT Press, 2000. (38Q6)
[6] E. Svenonius, The epistemological foundations of knowledge representations., Library Trends, vol. 52, no. 3, 2004. (38Q7)
[7] BSI, Structured Vocabularies for Information Retrieval - Guide: Part 4, Interoperability between vocabularies. London: British Standards Institution, 2007. (38Q8)
[8] BSI, Structured Vocabularies for Information Retrieval - Guide: Part 3, Vocabularies other than thesauri. London: British Standards Institution, 2007. (38Q9)
[9] BSI, Structured Vocabularies for Information Retrieval - Guide: Part 2, Thesauri. London: British Standards Institution, 2005. (38QA)
[10] BSI, Structured Vocabularies for Information Retrieval - Guide: Part 1, Definitions, Symbols and Abbreviations. London: British Standards Institution, 2005. (38QB)
[11] X. Ochoa and E. Duval, Quality Metrics for Learning Object Metadata, Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 10041011, 2006. (38QC)
[12] K. La Barre, Project: Facets on the web, Study: Facets on the web. [Online]. Available: http://courseweb.lis.illinois.edu/~klabarre/facetstudy.html. [Accessed: 02-Mar-2012]. (38QD)
[13] W. Schmitz-Esser and A. Sigel, Introducing terminology-based ontologies, in Papers and Materials presented by the authors at the workshop Introducing Terminology-based Ontologies at the 9th International Conference of the International Society for Knowledge Organization (ISKO). Vienna, Austria, July 6th, 2006. (38QE)
[14] D. Soergel, Indexing languages and thesauri: construction and maintenance. Los Angeles: Melville Pub. Co, 1974. (38QF)
[15] N. Z39.19, Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies. National Information Standards Organization, 2005. (38QG)
[16] D. Kless, From a thesaurus standard to a general knowledge organization standard⁈. 2007. (38QH)
[17] E. Peterson, Beneath the Metadata: Some Philosophical Problems with Folksonomy, D-Lib Magazine, vol. 12, no. 11, 2006. (38QI)
[18] M. L. Nielsen, `Thesaurus construction: key issues and selected readings, in The Thesaurus: Review, Renaissance and Revision, New York: Haworth Press, 2004, pp. 5774. (38QJ)
[19] S. Dextre-Clarke, `BS 8723: a new British Standard for structured vocabularies, NKOS Workshop, ECDL, Trondheim, vol. 21, 2003. (38QK)
Example Ontologies and Ontology-Based Systems (38LW)
Misc (38QL)
[1] E. D. Valle, I. Celino, D. DellAglio, R. Grothmann, F. Steinke, and V. Tresp, Semantic Traffic-Aware Routing Using the LarKC Platform, IEEE Internet Computing, vol. 15, no. 6, pp. 1523, 2011. (38QM)
[2] M. van S. Sam Madden, Internet-Scale Data Management, http://www.computer.org/. [Online]. Available: http://www.computer.org/csdl/mags/ic/2012/01/mic2012010010.html. [Accessed: 15-Feb-2012]. (38QN)
Cyc (33YV)
[1] C. Sammut and G. I. Webb, Eds., Encyclopedia of Machine Learning, 1st ed. Springer, 2011. (342P)
[2] M. Witbrock, K. Panton, S. L. Reed, D. Schneider, B. Aldag, M. Reimers, and S. Bertolo, Automated OWL annotation assisted by a large knowledge base, in Workshop Notes of the 2004 Workshop on Knowledge Markup and Semantic Annotation at the 3rd International Semantic Web Conference ISWC2004, 2004, pp. 7180. (342Q)
[3] M. Witbrock, C. Matuszek, A. Brusseau, R. Kahlert, C. B. Fraser, and D. Lenat, Knowledge begets knowledge: Steps towards assisted knowledge acquisition in Cyc, in Proc. of the AAAI 2005 Spring Symposium on Knowledge Collection from Volunteer Contributors, 2005. (342R)
[4] M. Witbrock, E. Coppock, and R. Kahlert, Uniting a priori and a posteriori knowledge: A research framework. (342S)
[5] M. Witbrock, D. Baxter, J. Curtis, D. Schneider, R. Kahlert, P. Miraglia, P. Wagner, K. Panton, G. Matthews, and A. Vizedom, An interactive dialogue system for knowledge acquisition in cyc, in Proceedings of the Workshop on Mixed-Initiative Intelligent Systems, 2003, pp. 138145. (342T)
[6] M. E. Taylor, C. Matuszek, P. R. Smith, and M. Witbrock, Guiding Inference with Policy Search Reinforcement Learning, in Proc. of FLAIRS, 2007. (342U)
[7] M. E. Taylor, C. Matuszek, B. Klimt, and M. Witbrock, Autonomous classification of knowledge into an ontology, in The 20th International FLAIRS Conference (FLAIRS), Key West, Florida, 2007. (342V)
[8] N. Siegel, B. Shepard, J. Cabral, and M. Witbrock, Hypothesis Generation and Evidence Assembly for Intelligence Analysis: Cycorps Noöscape Application, in Proceedings of the 2005 International Conference on Intelligence Analysis (IA 2005), 2005. (342W)
[9] N. Siegel, G. Matthews, J. Masters, R. Kahlert, M. Witbrock, and K. Pittman, Applying Cyc: Using the Knowledge-Based Data Monitor To Track Tests and Defects, 2004. (342X)
[10] B. Shepard, C. Matuszek, C. B. Fraser, W. Wechtenhiser, D. Crabbe, Z. Gungordu, J. Jantos, T. Hughes, L. Lefkowitz, M. Witbrock, and others, A Knowledge-based approach to network security: applying Cyc in the domain of network risk assessment, in PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL IN℡LIGENCE, 2005, vol. 20, p. 1563. (342Y)
[11] P. Shah, D. Schneider, C. Matuszek, R. C. Kahlert, B. Aldag, D. Baxter, J. Cabral, M. Witbrock, and J. Curtis, Automated population of Cyc: extracting information about named-entities from the web, in Proceedings of the Nineteenth International FLAIRS Conference, 2006, pp. 153158. (342Z)
[12] D. Schneider, C. Matuszek, P. Shah, R. Kahlert, D. Baxter, J. Cabral, M. Witbrock, and D. Lenat, Gathering and managing facts for intelligence analysis, in Proceedings of the International Conference on Intelligence Analysis, 2005. (3430)
[13] B. Rode and others, Towards a Model of Pattern Recovery in Relational Data, in Proceedings of the 2005 International Conference on Intelligence Analysis, 2005. (3431)
[14] B. Rode and R. C. Kahlert, Representational Reformulation in Hypothesis-Driven Recognition. (3432)
[15] S. L. Reed and D. B. Lenat, Mapping ontologies into Cyc, in AAAI 2002 Conference Workshop on Ontologies For The Semantic Web, 2002, pp. 16. (3433)
[16] D. Ramachandran, P. Reagan, and K. Goolsbey, First-orderized researchcyc: Expressivity and efficiency in a common-sense ontology, in AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applications, 2005. (3434)
[17] K. Panton, P. Miraglia, N. Salay, R. C. Kahlert, D. Baxter, and R. Reagan, Knowledge formation and dialogue using the KRAKEN toolset, in PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL IN℡LIGENCE, 2002, pp. 900905. (3435)
[18] K. Panton, C. Matuszek, D. Lenat, D. Schneider, M. Witbrock, N. Siegel, and B. Shepard, Common sense reasoningfrom Cyc to intelligent assistant, Ambient Intelligence in Everyday Life, pp. 131, 2006. (3436)
[19] T. OHara, S. Bertolo, M. Witbrock, B. Aldag, J. Curtis, K. Panton, D. Schneider, and N. Salay, Inferring parts of speech for lexical mappings via the Cyc KB, in Proceedings of the 20th international conference on Computational Linguistics, 2004, p. 1305. (3437)
[20] T. OHara, N. Salay, M. Witbrock, D. Schneider, B. Aldag, S. Bertolo, K. Panton, F. Lehmann, M. Smith, D. Baxter, and others, Inducing criteria for mass noun lexical mappings using the Cyc KB and its extension to WordNet, in Proc. of the Fifth International Workshop on Computational Semantics (IWCS-5), 2003. (3438)
[21] C. Matuszek, M. Witbrock, R. C. Kahlert, J. Cabral, D. Schneider, P. Shah, and D. Lenat, Searching for common sense: Populating Cyc from the Web, in Proceedings of the National Conference on Artificial Intelligence, 2005, vol. 20, p. 1430. (3439)
[22] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, An introduction to the syntax and content of Cyc, in Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, 2006, vol. 3864, pp. 4449. (343A)
[23] J. Masters and Z. Gungordu, Semantic knowledge source integration: a progress report, in Integration of Knowledge Intensive Multi-Agent Systems, 2003. International Conference on, 2003, pp. 562566. (343B)
[24] D. Mahler, Holistic query expansion using graphical models, New Directions in Question Answering, vol. 2004, pp. 203227, 2004. (343C)
[25] J. Ludwig, A. Davis, M. Abrams, and J. Curtis, Developing A Hidden Domain for Human and Electronic Students, Proceedings of the 2-11 IJCAI Workshop on Agents Learning Interactively from Human Teachers, 2011. (343D)
[26] F. Lehman and D. Foxvog, Putting Flesh on the Bones: Issues that Arise in Creating Anatomical Knowledge Bases with Rich Relational Structures, in AAAI-98 Workshop on Sharing Information in Bioinformatics and Medical Knowledge Bases, 1998. (343E)
[27] K. D. Forbus, L. Birnbaum, E. Wagner, J. Baker, and M. Witbrock, Analogy, Intelligent IR, and Knowledge Integration for Intelligence Analysis: Situation Tracking and the Whodunit problem, in International Conference on Intelligence Analysis: The Office of the Assistant Director of Central Intelligence, 2005. (343F)
[28] D. Fensel, F. Van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. Della Valle, F. Fischer, Z. Huang, A. Kiryakov, T. K. Lee, and others, Towards LarKC: a platform for web-scale reasoning, in Semantic Computing, 2008 IEEE International Conference on, 2008, pp. 524529. (343G)
[29] C. Deaton, B. Shepard, C. Klein, C. Mayans, B. Summers, A. Brusseau, M. Witbrock, and D. Lenat, The comprehensive terrorism knowledge base in cyc, in Proceedings of the 2005 International Conference on Intelligence Analysis, 2005. (343H)
[30] J. Davis, Semantic knowledge management : integrating ontology management, knowledge discovery, and human language technologies. Berlin; Heidelberg: Springer, 2009. (343I)
[31] J. Curtis, G. Matthews, and D. Baxter, On the effective use of Cyc in a question answering system, in IJCAI Workshop on Knowledge and Reasoning for Answering Questions, 2005. (343J)
[32] J. Curtis, J. Cabral, and D. Baxter, On the application of the Cyc ontology to word sense disambiguation, in Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference, 2006, pp. 652657. (343K)
[33] J. Curtis, D. Baxter, P. Wagner, J. Cabral, D. Schneider, M. Witbrock, and others, Methods of Rule Acquisition in the TextLearner System, in Proceedings of the 2009 AAAI Spring Symposium on Learning by Reading and Learning to Read, 2009, pp. 2228. (343L)
[34] J. Cabral, R. C. Kahlert, C. Matuszek, M. Witbrock, and B. Summers, Converting Semantic Meta-knowledge into Inductive Bias, in Inductive Logic Programming, vol. 3625, S. Kramer and B. Pfahringer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 38-50. (343M)
[35] A. Belasco, J. Curtis, R. Kahlert, C. Klein, C. Mayans, and P. Reagan, Representing Knowledge Gaps Effectively, Practical Aspects of Knowledge Management, pp. 159164, 2004. (343N)
[36] D. Baxter, B. Shepard, N. Siegel, B. Gottesman, and D. Schneider, Interactive natural language explanations of cyc inferences, in Proceedings of AAAI, 2005. (343O)
[37] M. Assel, A. Cheptsov, G. Gallizo, I. Celino, D. DellAglio, L. Bradeko, M. Witbrock, and E. D. Valle, Large knowledge collider: a service-oriented platform for large-scale semantic reasoning, in Proceedings of the International Conference on Web Intelligence, Mining and Semantics, 2011, p. 41. (343P)
[38]ekaw02-aitken-curtis.pdf. . (343Q)
[39]fusion2002.pdf. . (343R)
[40]CEARCH-abstract-hpec-9-06.pdf. . (343S)
[41]fs-06-02.php. . (343T)
[42]DantosRecipeForClio.pdf. . (343U)
[43]Harnessing_Cyc_to_Answer_Clincal_Researchers_ad_hoc_Queries.pdf. . (343V)
[44]Translation_from_Logic_to_English.pdf. . (343W)
[45] AAAI Fall Symposium, K. Murray, I. Harrison, and American Association for Artificial Intelligence., Capturing and using patterns for evidence detection : papers from the AAAI Fall Symposium, Menlo Park, Calif., 2006. (3424)
QUOMOS - Quantities and Units of Measure (38LX)
[1]OASIS Quantities and Units of Measure Ontology Standard (QUOMOS) TC. [Online]. Available: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=quomos. [Accessed: 03-Mar-2012]. (38QO)
General Issues in Ontology (3425)
[1] N. Guarino, D. Oberle, and S. Staab, What Is an Ontology?, in Handbook of Ontologies, 2nd ed., Springer Berlin Heidelberg, 2009. (38QP)
[2]OntologyLanguages--MichaelGruninger-ConradBock_20070222.ppt. . (38QQ)
[3] J. F. Sowa, Knowledge representation : logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole, 2000. (38QR)
Model-driven Engineering (38LY)
[1] D. C. Schmidt, Guest Editors Introduction: Model-Driven Engineering, Computer, vol. 39, no. 2, pp. 25 31, Feb. 2006. (38QS)
Ontology Development Methodology (38LZ)
[1] A. Belasco, J. Curtis, R. Kahlert, C. Klein, C. Mayans, and P. Reagan, Representing Knowledge Gaps Effectively, Practical Aspects of Knowledge Management, pp. 159164, 2004. (38QT)
[2] J. F. Sowa, Knowledge representation : logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole, 2000. (38QU)
[3] S. Kohler, S. Bauer, C. Mungall, G. Carletti, C. Smith, P. Schofield, G. Gkoutos, and P. Robinson, Improving ontologies by automatic reasoning and evaluation of logical definitions, BMC bioinformatics, vol. 12, no. 1, p. 418, 2011. (38QV)
[4] M. West, EPISTLE: Developing High Quality Data Models, Version 2.0, Issue 2.1. European Process Industries STEP Technical Liason Executive, Mar-1996. (38QW)
[5] M. West, Developing high quality data models. Burlington, MA: Morgan Kaufmann, 2011. (38QX)
[6] S. Lodhi and Z. Ahmed, Content Ontology Design Pattern Presentation. (38QY)
Ontology Reuse (38M0)
[1] H. Halpin, P. Hayes, J. McCusker, D. Mcguinness, and H. Thompson, When owl: sameas isnt the same: An analysis of identity in linked data, The Semantic WebISWC 2010, pp. 305320, 2010. (38PC)
Provenance Metadata (38M1)
[1] J. P. McCusker, T. Lebo, L. Ding, C. Chang, P. P. da Silva, and D. L. McGuinness, Where did you hear that? Information and the Sources They Come From. (38PD)
[2] D. Hooijmaijers and M. Stumptner, Trust‐annotated ontology integration using social modelling, Expert Systems, vol. 25, no. 3, pp. 237252, Jul. 2008. (38PE)
[3] J. Michaelis and D. McGuinness, Towards provenance aware comment tracking for web applications, Provenance and Annotation of Data and Processes, pp. 265273, 2010. (38PF)
[4] S. Zednik, P. Fox, and D. McGuinness, System Transparency, or How I Learned to Worry about Meaning and Love Provenance!, Provenance and Annotation of Data and Processes, pp. 165173, 2010. (38PG)
[5] J. G. Zheng, P. Wang, E. W. Patton, T. Lebo, and J. S. L. D. L. McGuinness, A Semantically-Enabled Provenance-Aware Water Quality Portal. (38PH)
Subject Matter Expert (SME) Ontology Development and Validation (38M2)
[1] S. Jupp, J. Klein, J. Schanstra, and R. Stevens, Developing a kidney and urinary pathway knowledge base, Journal of Biomedical Semantics, vol. 2, no. Suppl 2, p. S7, 2011. (38PI)
Subject-based Classification Systems (38RR)
[1] E. Svenonius, LCSH: Semantics, Syntax and Specificity, Cataloging & Classification Quarterly, vol. 29, no. 1, pp. 1730, 2000. (38RS)
Use Case Characterization (33YX)
[1] F. Neuhaus, E. Florescu, A. Galton, M. Gruninger, N. Guarino, L. Obrst, A. Sanchez, A. Vizedom, P. Yim, and B. Smith, Creating the ontologists of the future, Applied Ontology, vol. 6, no. 1, pp. 9198, 2011. (3427)