Optimized SPARQL performance
management via nafive API

Ontology Summit 2014 (Track-E) Hackathon, project #3 preliminary report

Contents

o T [=To1 A o T- | S 1
Triplestore SEIECtiON.t e rreee e reeesene e senseseeasesenssesensssrensesenssssensasennnenens 1
7T s ol o] 4 0 F= T (e [=T (=P 2
(37T ool o] 4 dF=T0 Q7AYo o] Lot 1 4 o] 1 H R 2
EXPOIIMENTES .ccieiieiiiiiiiiiiiiiiircririrecreerareceestastassassescssssassescasssassassassssssnssassassasssassnssassnnns 2
Standard SP2DENCH QUETIESeii i e e e e s e e s seaaeeeeenaes 3
Simple filter (0N€ VAriable)ooeeiiii e 6
L A R T] o (=1 TSR 6
Y1000 (=l T [Tl VUSRS 7
Y0 o1 LI € e TUT o I o USSP 8
RESUILS diSCUSSION.......ccuuieeiieiieiriiriereereeereaereeeraeerneerneesesssenssenssrnssraserassrassrenssenssenssensernsennne 9
F3Y o] 01T 4 o [G R 10
F3Y o] 01T 4 Lo [G0 2 U 12

Project Goal

The project goal was running SPARQL queries on several triplestores to understand the
advantages of one or another triplestore on one or another query, the factors affecting their
performance.

Triplestore Selection

We've selected the following triplestores as performance leaders on RDF market:

e Virtuoso Universal Server Release 7.1 (http://virtuoso.openlinksw.com/)
e Stardog 2.1.2 (http://stardog.com/)
e NitrosBase RDF Storage 1.0 Release Candidate (http://nitrosbase.com/)

The selected triplestores have the following important advantages:

e Very high performance on sp2bench benchmark
e Linux and Windows versions
e Native API for fast query processing

Note: For simplicity, we used Windows versions the tools above.

Usually people use endpoints to compare triplestores. However, endpoints put a big overhead
on a triplestore performance. That may influence on the performance comparison result. That's

Optimized SPARQL performance management via native API
why we used native API for our experiment. All 3 tools have necessary components to fit to our
needs:

e Virtuoso has fast ADO.NET provider.
e Stardog has special fast dotnetrdf classes.
e NitrosBase RDF provides native API.NET classes.

Note: We suggested to participants to change/extend the set of triplestores, but received no
proposals.

Benchmark queries

We have designed an advanced set of queries (see Appendix 2) based on recognized SP?Bench
benchmark. Those queries extend of SP?Bench core query set and stress the attention on:

e search the small range of values
e search the big range of values

e Sorting

e Aggregation

e Various join queries

Note: We offered participants to change/extend the set of queries, but received no feedback.

Benchmark Application

To facilitate the setup stage and save experiment preparation time we developed the
benchmark application in advance. We supposed to modify the application during the
Hackathon if someone offered change in the triplestore set, but it was not needed. Basically the
application opens connection to each triplestore and runs the queries on it.

Experiments

We set up experiments on 3 participants' computers. The computers have the following
configurations:

Computer 1

Processor: Intel Core i5-3570 CPU @3.40 Ghz; Memory: 32 Gb; SSD: Corsair Force GS 240 Gb;
Windows 8.1 x64

Computer 2

HP Compaq 8100 workstation with Intel Core i5; CPU @ 2.80 GHz, with 8Gb RAM; HD: Hitachi
HDS721025CLA382 ATA (232GB)
Windows Server 2008 R2 Standard SP1.

Ontology Summit 2014 (Track-E) Hackathon, project #3 2

Optimized SPARQL performance management via native API

Computer 3

Processor i5 3570, 3400MHz, 16 GB CORSAIR Vengeance CMZ8GX3M1A1600C10 DDR3
memory; OCZ Vertex 3 Max IOPS VTX3MI-25SAT3-120G 120GB SSD.
Windows 8.1 x64

We experimented with 25 min triple datasets generated by the generation utility downloaded
from SP2Bench site (http://dbis.informatik.uni-freiburg.de/content/projects/SP2B/docs/sp2b-
vl_01-full.tar.gz).

Each run the query was sent to server and full result was read. That was done to avoid an idle
run of query, caused by the fact that some database tools don't run query physically until the
result is read.

Each query run 10 times and median value has been taken as the result value.

We've preliminarily tested the databases and have been seen that the tools we considered
don't cache the result. That made us convinced that 10 times run gives us reliable median
value.

All the diagrams below present the Computer 1 results. The results of Computer 2 and
Computer 3 didn't show considerably different results.

Due to limited time, we decided to run standard SP2Bench queries (Query 1 — Query 12C) on
computer 1 run only. Extended queries (Query 20 — Query 64) run on all 3 computers.

The results
STANDARD SP2BENCH QUERIES

Larger bars indicate better performance.

Query1
Virtuoso
Stardog
NitrosBase [
0 2000000 4000000 6000000 8000000 10000000 12000000 14000000
queries per minute
Query2
Virtuoso
Stardog
NitrosBase |
0 5 10 15 20 25 30 35 40
queries per minute
Query3a
Virtuoso
Stardog |
NitrosBase |

o

200 400 600 800 1000 1200
queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Query3b
Virtuoso [
Stardog [l
NitrosBase |
0 2000 4000 6000 8000 10000 12000 14000
queries per minute
Query3c
virtuoso —
stardog |
NitrosBase |
0 5000 10000 15000 20000 25000 30000
queries per minute
Query5a
Virtuoso [N
Stardog
NitrosBase |
0 5 10 15 20 25
queries per minute
Query5b
Virtuoso [l
Stardog |
NitrosBase |
0 20 40 60 80 100 120
queries per minute
Query6
Virtuoso |
Stardog
NitrosBase |
0 5 10 15 20 25 30 35 40
queries per minute
Query7
Virtuoso
Stardog |
NitrosBase |
0 100 200 300 400 500 600 700 800 900 1000
queries per minute
Query8
Virtuoso [l
Stardog
NitrosBase |

o

10000 20000 30000 40000 50000 60000 70000
queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Query9
virtuoso [N
stardog [N
NitrosBase |
0 10 20 30 40 50 60
queries per minute
Query10
Virtuoso |
Stardog
NitrosBase |
0 200000 400000 600000 800000 1000000 1200000 1400000
queries per minute
Queryl1
Virtuoso
Stardog
NitrosBase |
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000
queries per minute
Queryl2a
Virtuoso |
Stardog
NitrosBase |
0 500000 1000000 1500000 2000000 2500000 3000000
queries per minute
Query12b
Virtuoso
Stardog
NitrosBase |
0 1000000 2000000 3000000 4000000 5000000
queries per minute
Queryl2c
Virtuoso i
Stardog
NitrosBase [

o

2000000 4000000 6000000 8000000 10000000 12000000 14000000
queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

SIMPLE FILTER (ONE VARIABLE)
Larger bars indicate better performance.

select ?x ?y ?title
where{
?x dcterms:issued ?y.
?X Swrc:pages ?pages.
?x dc:title ?title.
filter(?y >= "2005"""xsd:integer)

Query 20
Virtuoso |
Stardog
NitrosBase |
0 50 100 150 200 250 300 350 400 450 500
queries per minute
Query 21
Virtuoso |
Stardog |
NitrosBase |
0 100 200 300 400 500 600 700 800
queries per minute
Query 22
Virtuoso |
Stardog |
NitrosBase |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
queries per minute
FILTER (TWO VARIABLES)

These 3 queries are almost identical to 20-22 queries. Additional condition added.

select ?x ?y ?title
where {
?x dcterms:issued ?y.
?X Swrc:pages ?pages.
?x dc:title ?title.
filter(?y >= "2005"""xsd:integer && ?pages < "50"""xsd:integer)

Query 30
Virtuoso ||
Stardog |
NitrosBase [
0 200 400 600 800 1000 1200

queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Query 31
Virtuoso ||
Stardog |
NitrosBase |
0 200 400 600 800 1000 1200 1400
queries per minute
Query 32
Virtuoso [
Stardog |
NitrosBase |

0 2000 4000 6000 8000 10000 12000
queries per minute

SIMPLE ORDER BY

These 3 queries are almost identical to 20-22 queries. Result is ordered.

select ?x 2y ?title
where {
?x dcterms:issued ?vy.
?X sSwrc:pages ?pages.
?x dc:title ?title.
filter (?y >= "2005"""xsd:integer)
}
order by ?title

Query 40
Virtuoso |
Stardog
NitrosBase |
0 50 100 150 200 250 300 350 400 450
queries per minute
Query 41
Virtuoso |
Stardog |
NitrosBase [N
0 100 200 300 400 500 600 700
queries per minute
Query 42
Virtuoso i
Stardog ||
NitrosBase |

o

500 1000 1500 2000
queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

1600

14000

500

800

2500

Optimized SPARQL performance management via native API

SIMPLE GROUP BY

Query 50
virtuoso NN
stardog |
NitrosBase |
0 100 200 300 400 500 600 700 800 900 1000
queries per minute
Query 51
virtuoso [N
stardog |
NitrosBase |
0 100 200 300 400 500 600 700 800 900
queries per minute
Query 52
virtuoso N
stardog [N
NitrosBase |
0 100 200 300 400 500 600 700 800 900
queries per minute
Query 53
Virtuoso [l
Stardog
NitrosBase |
0 10 20 30 40 50 60 70 80 90 100
queries per minute
Query 60
virtuoso |
stardog [N
NitrosBase |
0 200 400 600 800 1000 1200
queries per minute
Query 61
virtuoso [——
stardog [N
NitrosBase |

o

100 200 300 400 500 600
queries per minute

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Query 62
Virtuoso
Stardog
NitrosBase |
0 10 20 30 40 50 60
queries per minute
Query 63

Almost like 62 but we select distinct instead of group by

Virtuoso
Stardog
NitrosBase |
0 10 20 30 40 50 60 70
queries per minute
Query 64

Almost like 62 but simple filter added

Virtuoso
Stardog |
NitrosBase |
0 20 40 60 80 100 120 140 160 180

queries per minute

Results discussion

Before we started these experiments, we had the belief that RDF databases are slow. The
experiments revealed that RDF databases are developing and performance is growing. For
example, query 20 and further results show that RDF storages perform fast and can compete
with SQL databases. In future we plan joint testing of SQL and RDF databases.

Queries 60 and 61 revealed NitrosBase's optimizer problem. NitrosBase developers focused on
complicated queries and overlooked the simple cases.

Comparison of the results showed that NitrosBase is performance leader on practically all
queries. Virtuoso sure takes 2" place. Stardog takes 3™, but it does not mean that the last is
poor. All 3 triplestores are indisputable performance leaders.

Note: When reviewing the results, it does not make sense to pay attention to 1.5-2 times result
variation. This is natural fluctuation.

The result of our experiments is not official. This is just an attempt to "touch" three RDF tools
and get a general idea of the factors affecting their performance.

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Appendix 1

Experiment results are presented in the following tables. Each value presents time measured in

milliseconds.

Computer 1:
Query NitrosBase Stardog Virtuoso
qo1 5 22997 518
q02 1583814 fail 140087354
q03a 54328 9725924 11418243
q03b 4765 86865 77513
q03c 2506 27813 3135
q05a 3125831 fail 21335902
q05b 545158 107931448 16236869
q06 1625924 fail 207752624
q07 66836 13866870 62765539
q08 1016 416458 48087
q09 1150789 15803823 3265959
qlo0 50 25663 13916
qll 8 2033861 1232251
gql2a 22 8407547 1739
ql2b 13 131085 26285
ql2c 5 11252 265
q20 129008 170060861 21757596
q21 83476 23922854 13771229
q22 6894 2376668 1195975
q30 62915 11593611 5468326
q31 42680 7326679 3627272
q32 5091 1875197 306016
q40 131115 156046162 30620603
g4l 84642 30246351 18751001
q42 27398 2637900 1580940
q50 67031 245866 265858
q51 70859 367479 219174
q52 77834 519474 230954
q53 640554 fail 41559420
q60 100910 750581 55667
g61 122351 1050396 200442
q62 1187102 fail 39410007
q63 1042391 fail 35891531
q64 375653 102587694 12743932

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Computer 2:
Query NitrosBase Stardog Virtuoso
q20 260229 fail 17 522 322
q21 161423 144349644 11388279
q22 13616 3312932 974756
q30 123017 14229527 5005780
q31 79049 9830377 3452072
q32 10817 2238886 278897
q40 267557 235022161 44628742
q4l 156082 37805727 29586484
q42 48428 3515197 1480360
q50 134967 341642 255505
q51 125563 380910 388675
q52 148664 784128 414143
q53 925829 fail 31149544
q60 191870 930068 613562
g61 234778 1448012 490013
q62 1749368 fail 38613926
q63 1559766 fail 38208 613
q64 554182 fail 12 797 403
Computer 3:
Query NitrosBase Stardog Virtuoso
q20 125647 134912080 11135239
q21 80833 21170582 6763039
q22 6738 2132616 653323
q30 59480 9253996 2846559
q31 40430 6328763 1955788
q32 4496 1687837 227834
q40 127105 126812409 15445879
q4l 82028 25280768 9257086
q42 24901 2338650 754312
q50 67181 229431 130079
q51 70772 269153 162227
q52 75824 385962 248089
q53 609846 fail 12242030
q60 98704 fail 235873
q61 123457 fail 284016
q62 1081411 fail 12745968
q63 925877 fail 12856960
q64 330951 fail 4309307

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

Appendix 2

The queries run in the experiments. Queries 1-12C are standard Sp2Bench queries and don't
need to be listed here. You can download them from SP2Bench site (http://dbis.informatik.uni-
freiburg.de/content/projects/SP2B/docs/sp2b-v1_01-full.tar.gz). Extended queries are below:

Prefix:

prefix
prefix
prefix
prefix
prefix
prefix
prefix
prefix
prefix

q20

select
where {

dc: <http://purl.org/dc/elements/1.1/>

dcterms: <http://purl.org/dc/terms/>

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

swrc: <http://swrc.ontoware.org/ontology#>

foaf: <http://xmlns.com/foaf/0.1/>

bench: <http://localhost/vocabulary/bench/>

xsd: <http://www.w3.0rg/2001/XMLSchema#>

person: <http://localhost/persons/>

?x 2y ?title

?x dcterms:issued ?y.

?X sSwrc:pages ?pages.

?x dc:title ?title.

filter(?y >= "2005"""xsd:integer)

}

q21

select
where {

?x 2y ?title

?x dcterms:issued ?y.

?X sSwrc:pages ?pages.

?x dc:title ?title.

filter(?y >= "2010"""xsd:integer)

}

q22

select
where {

?x 2y ?title

?x dcterms:issued ?y.

?X Swrc:pages ?pages.

?x dc:title ?title.

filter (?y >= "2015"""xsd:integer)

}

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

q30

select ?x ?y ?title

where{

?x dcterms:issued ?y.

?X Swrc:pages ?pages.

?x dc:title ?title.

filter (?y >= "2005"""xsd:integer && ?pages < "50"""xsd:integer)
}

q31

select ?x ?y ?title

where {

?xX dcterms:issued ?y.

?X swrc:pages ?pages.

?x dc:title ?title.

filter(?2y >= "2010"""xsd:integer && ?pages < "50"""xsd:integer)
}

q32

select ?x ?y ?title

where {

?x dcterms:issued ?y.

?X swrc:pages ?pages.

?x dc:title ?title.

filter(?2y >= "2015"""xsd:integer && ?pages < "50""*xsd:integer)
}

q40

select ?x ?y ?title

where{

?x dcterms:issued ?y.

?X sSwrc:pages ?pages.

?x dc:title ?title.

filter(?y >= "2005"""xsd:integer)
}

order by ?title

q4l

select ?x ?y ?title

where{

?x dcterms:issued ?y.

?X Swrc:pages ?pages.

?x dc:title ?title.

filter (?y >= "2010"""xsd:integer)
}

order by ?title

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

q42

select ?x ?y ?title

where{

?x dcterms:issued ?y.

?X Swrc:pages ?pages.

?x dc:title ?title.

filter(?y >= "2015"""xsd:integer)
}

order by ?title

q50

select (COUNT (*) as ?cnt) ?journal
where {
?X swrc:journal ?journal.

}

group by ?journal

q51

select (COUNT (*) as ?2cnt) ?2title
where{

?xX swrc:journal ?journal.
?journal dc:title ?title.

}

group by ?title

q52

select (COUNT (*) as ?cnt) ?title ?issued
where{

?x swrc:journal ?journal.

?journal dc:title ?title.

?journal dcterms:issued ?issued.

}

group by ?title ?issued

q53

select (COUNT(*) as ?cnt) ?y ?title
where{

?xX swrc:journal ?journal.

?journal dc:title ?title.

?journal dcterms:issued ?issued.

?x dc:creator ?y

}

group by ?y ?title

Ontology Summit 2014 (Track-E) Hackathon, project #3

Optimized SPARQL performance management via native API

q60

select (COUNT (*) as ?2cnt) ?issued
where {

?x dcterms:issued ?issued.

?X sSwrc:pages ?pages

}

group by ?issued

q61

select (COUNT (*) as ?cnt) ?issued
where {

?x dcterms:issued ?issued.

?X swrc:pages ?pages

}

group by ?issued ?pages

q62

select (COUNT (*) as ?cnt) ?y ?issued
where {

?x dcterms:issued ?issued.

?X sSwrc:pages ?pages.

?x dc:creator ?y

}

group by ?y ?issued

q63

select distinct ?y ?issued
where{

?x dcterms:issued ?issued.
?X sSwrc:pages ?pages.

?x dc:creator ?y

}

q64

select (COUNT (*) as ?cnt) ?y ?issued
where{

?x dcterms:issued ?issued.

?X Swrc:pages ?pages.

?x dc:creator ?y

filter (?pages < "50"""xsd:integer)

}

group by ?y ?issued

Ontology Summit 2014 (Track-E) Hackathon, project #3

