
Structure Diagrams in Type Theory

Henson Graves

Algos Associates
2829 West Cantey Street

Fort Worth, TX 76109 United States
henson.graves@hotmail.com

Abstract. Structures consisting of parts with connections between the
parts occur frequently in science and engineering. A structural descrip-
tion is used to capture common properties which apply to a class of
structures such as water molecules. Description Logics have been used to
create axiom sets which describe structures in the sense that their models
consist of structures. However, description logics (DL) are restricted in
their ability to capture properties common to many applications. In DL
part properties are generally represented as a single property with special
axioms. Many applications can be described as having a family of part
properties each with a domain and range class. The graphical syntax of
SysML provides a well-developed language for specifying structure dia-
grams with families of part properties. An abstraction of diagrams using
part property families are defined and embedded within a type theory as
a restricted form of axiom set. The axiom set restrictions satisfied by a
structure diagram ensure that each structure satisfying the axioms has a
unique part decomposition. Type theory contains Description Logic con-
structions which are used in embedding structure descriptions. However,
type theory significantly extends the language constructions of DL. The
decidability of the consistency of a Structure Diagram is established and
conditions are given on Structure Diagrams which ensure that they are
templates in the sense that all minimal models are isomorphic.

Keywords: Description Logic, SysML, OWL, Type Theory, Structure
Diagrams

1 Introduction

Structures consisting of parts with connections between the parts occur fre-
quently in science and engineering applications. For example, a water molecule
with its decomposition into atoms and bonds between atoms is such a struc-
ture. Similarly an automobile with its decomposition into parts and connections
between them is such a structure. In science a structural description is used
to capture classifying properties of the structures which realize the description.
Engineering also uses structural descriptions as specifications for a system to
be implemented. For example a detailed design of an automobile specifies the
parts and assemblies of parts with connections between them that constitute an

2

implementation of the product description. For a complex manufactured system
such as an aircraft the delivery acceptance criteria includes a determination that
all of the parts are present and connected as specified by the system description.
Both biomedicine and engineering use structural descriptions to help determine
abnormalities and operating faults by comparing whether a specific structure, be
it a human heart or an automobile, deviates from the description or norms that
apply to instances of the description.In addition rules may be used to describe
how pathology observed in one part of a system affects other parts. Observations
are then used to infer causes. Diagnosis and prediction involve generally involve
reasoning. These applications are now beginning to be recognized as candidates
for the use of automated reasoning.

Valid reasoning requires a logic in which to axiomatize structures; one wants
to verify properties of an axiom set which are then true in any model. For
structure axioms a model may contain multiple instances of a structure that
satisfies the model. For example a model of the water molecule may contain
multiple water molecules. A single water molecule is a minimal model for a
water molecule axiom set. For the axioms to capture the intended applications
one wants the minimal models to be finite and one is concerned to find conditions
which ensure that all minimal models are copies of each other. Then, for example,
deriving the weight of a water molecule from the axioms can be applied to all
instances. This paper will show that Type Theory provides a suitable logic in
which structural descriptions can be represented as axiom sets. For these axiom
sets tractable reasoning algorithms are available.

Fig. 1. Human Heart

3

The diagram in Figure 1 adapted from [10] is an example of an informal di-
agram used to abstract properties of the human heart. The vertices are labelled
with components of the heart and the edges indicate relationships between these
parts. For example,one might infer that LeftV entricle is a subdivision of the
LeftAtrium of the heart. The exact meaning of the diagram is far from clear
without additional information regarding diagramming conventions. This dia-
gram is used to motivate and illustrate an embedding of Structure Diagrams
into type theory [3]. In the following diagrams such as Figure 1 are embed-
ded within type theory. While the embedding is different from that in [10] the
embedding makes extensive use of DL language constructions.

Representing Structure Diagrams in Description Logics Description
Logics are natural candidates for representing structures and have been used
in human anatomy [6] and molecular chemistry [7], as well as engineering [4].
Description Logics use classes and binary properties as primitives. In the Descrip-
tion Logic literature classes are called concepts and properties are called roles.
A Description Logic representation of Figure 1 would represent LeftV entricle
as a class corresponding to the node of that name. The class can be viewed as a
specification for its instances. While Description Logic constructions of classes
and properties are natural candidates for structural modeling, the ability of a
Description Logics to represent graph structures with parts and arbitrary con-
nections is limited when the connections contain cycles. The diagram in Figure
1 was introduced to illustrate limitations of DL in order to motivate an exten-
sion of DL. Vertices are translated into classes and the edges are labelled with
properties in [10]. However, the edges are also used to construct DL axioms to
represent the semantics of the diagram. In [10]the DL axiom

LeftAtrium v ∃Part.AorticV alve. (1)

is used represent the meaning of the arrow from LeftAtrim to AorticV alve.
The axiom states that LeftAtrium is a subclass of ∃Part.AorticV alve. The
second class describes things which have a part which is an aortic valve. This
semantics is used for all of the arrows in the diagram. However, it is not clear
that this semantics is always correct. For example, the edge from AorticV alve to
LeftV entricle labeled Part appears to have a different meaning than the arrow
labeled hasConnection. This arrow appears to means that the aortic valve of
the left atrium has a connection to the left ventricle which is the same ventricle
which is the same left ventricle which is a division of the left atrium. This
statement can be represented by a construction which does not appear to be
used in Description Logics, called an equalizer. Informally the equalizer enables
specification of hearts for which the aortic valve is connected to the same left
ventricle that is a division of the left atrium.

In DL, following [2] the Part concept is generally represented as a single
property that satisfies axioms such as transitivity, and irreflexiveness. However,
each arrow in Figure 1 can be represented as a distinct property with a specific
domain and range class. In Figure 1 each node is connected by a part relation

4

path to Heart when the divisionOf properties are viewed as part properties.
Other properties express connections between the nodes. The part family and
the connections are functional properties in the heart example and satisfy ad-
ditional constraints which simplify the task of establishing whether a structure
description is consistent. Representation of a structure diagram graphically is
easier to construct than the DL representation. However, the diagram still has
to be embedded within a logic. Using graphical descriptions embedded into type
theory with the decidability of consistency preserved provides a practical way to
develop structural descriptions.

Representing Structure Descriptions in Type Theory A structure de-
scription can be embedded as a special kind of axiom set within type theory
[3]. Type theory is a deduction system. The syntax is given by term and type
constructions. The semantics is given by inference rules. Type theory contains
both the syntax of DL as well as that of higher order logic. Type theory contains
a correspondence between the types that represent DL classes and properties,
and formulas within the internal logic. A correspondence between types and for-
mulas enables the construction of internal models of axiom sets within the logic.
Type theory also has the expressiveness to capture system dynamics. However,
that will not be addressed here. Type theory readily accommodates families of
typed properties. The restrictions on axiom sets used for a structure diagram
also enable use of a graphical syntax which corresponds to that of SysML. A
proof of decidability of satisfaction for a structure diagram makes use of type
theory properties to eliminate quantifiers to reduce the formula representation
for a structure diagram to one which uses only a single universally quantified
formula with monadic predicates. In type theory a functional property can be
replaced with a Skolem map term which whose value for each argument satis-
fies the functional property. Since there are only a finite number of connection
equations each connection equation can be replaced by a finite number of unary
predicates.

2 Structure Descriptions

Structure description examples such as the human heart diagram can be spec-
ified by production rules. A structure description is a set of declarations and
assertions including special assertions for parts and connections. The semantics
for a structure description will be given by the type theory inference rules when
the syntax is embedded within type theory. To specify the syntax the symbols
A,B,C, p, q, r, and a, b, c will be used respectively for classes,properties,and in-
dividuals.

Declarations Declarations introduce atoms for classes,properties, and individ-
uals and give their typing relationships. A declaration has one of the forms:

A : Class | a : A | < a, b >: p | p : (A,B)[k] (2)

5

In a property declaration p : (A,B[k]) the A is the domain and the B is the
range class of the property. The k in brackets is optional. Informally it says that
the number of values for an argument instance is k. The type theory semantics
for p : (A,B)[k] is equivalent to the DL assertion A v ∃p.B. This semantics will
be supplied by type theory inference rules.

Assertions An assertion has one of the forms:

A v B |A = B |A ⊥ B (3)

p v q | p = q | p ⊥ q (4)

dom(p) = A | range(p) = B (5)

The only property constructions allowed are finite compositions of atomic prop-
erties where the domains and ranges match. A finite composition of properties
is called a path. A path is called irreflexive if domain(pi) 6= range(pk) for any
atomic properties pi and pj in the path. Two properties p and q are disjoint
written as p⊥q if p ∩ q = Nothing.

Parts A part declaration is given as:

p : Part(A,B)[k] (6)

The part declarations satisfy well-formedness axioms given below. A part p :
Part(A,B) is a property with p : (A,B[k]) for some k. The Part axioms are:
acyclic

π part path

notπ : (A,A)
(7)

orthongonality
p : Part(A,B) q : Part(C,B)

p⊥q
(8)

A part path is a finite composition of part property atoms. These axioms are
syntactically checkable. The orthogonality axiom is used to ensure that in an
implementation parts of the same type do not get reused.

Connections Connections are atomic functional properties declared between
classes which are the domain or range of a part property. In an interpretation a
connection is used to connect instances of classes that occur in a structure. The
form of a connection declaration is:

c : Conn(A,B) where A and B are part classes (9)

Theorem 1. Any part path in a structure description is finite and irreflexive

6

A part path is irreflexive in the sense that if domain(p) = range(q) for some p
and q in the path otherwise it has a sub path π which has a loop and so π = null.
A class in the signature of the structure only has a single occurrence as a domain
or range of a property in a part path otherwise the path has a cycle. Hence any
part path has finite length.

A StructureDiagram is a Structure Description with the following addi-
tional axioms. The part properties are functional and their inverses are also
functional, and it has a unique root. A root is a class which is not the range
of any part property. If the signature does not have a root then a root class
can be added. As part properties are bounded they can always be replaced with
functional properties. The axiom that the inverse property of a part is functional
ensures that a part is not used more than once in any interpretation. The in-
formal semantics of a connection is that for any instance of the root the chain
of instances from the root to A followed by c is equal to the chain of instances
from the root to B. The formal semantics will be the inference semantics for the
type theory equalizer construction.

A Structure Diagram may have multiple part properties which have the same
range, for example when an automobile has four wheels. However, a directed
graph can be constructed which distinguishes classes which are the range of
multiple part properties. The Internal Block Diagram (IBD)of a Structure Di-
agram is the directed graph whose vertices are the root together with the ex-
pressions p:A, where p a part property p with A = Range(p). The edges are
the part properties. This graph is in named after the SysML diagram which is
used to represent Structure Diagrams. An interpretation of this graph is a parts
decomposition for the Structure Diagram.

Theorem 2. Each node of the IBD is reachable by a unique part path.

The IBD graph is a tree as it has no node with two arrows terminating at that
node. If all of the nodes cannot be reached from Root, then there is another root
which is a contradiction. If p and q are part paths p1 . . . pn and q1 . . . qn which
terminate at the node p : A then < pn : A >=< qk : A > and so pn = qk. The
argument is repeated on the remainder of the paths.

Theorem 3. The number of part paths is finite.

The number of part paths is bounded by the sum of the number of nodes times
the lengths of paths from the root to each node.

The IBD graph satisfies most properties of a DG extension to DL [10]. The
functional property of the part inverses insure that no two instances of the graph
in an interpretation share any nodes. Further if an interpretation contains an
instance of a class then it contains the whole graph as one can chain back to the
root and then reach any other node. As will be seen type theory inference rules
for a Structure Diagram provides a semantics for the heart diagram in accord
with its informal semantics.

7

3 Algos type theory

Algos is a deduction system. The syntax is given by map and type term con-
structions with logical predicates for term equality, containment, and typing. The
semantics is given by inference rules which have the form of a list of antecedents
followed by a conclusion. The antecedents and conclusions are primitive predi-
cates such as a : A and X = Y in which the arguments are term variables. The
variables are substituted for in application of a rule. Map terms are composable.
A composition construction is given as one of the map term constructions. For
example the rule for the composition of maps is given as:

p : A→ B, q : B → C

q(p) : A→ C
(10)

Both classes and properties are represented as types; classes as subtypes of an
atomic type, Thing and properties as subtypes of the protuct type (Thing, Thing).
Properties have both a domain and a range type. A property p : (A,B) is a sub-
type of the product (A,B) which is a subtype of (Thing, Thing). The notation
a : A is used for an instance a of a type A, and the notation < a, b >: p is used
for a pair which is an instance of a property p.

Type theory contains a truth value type, Ω. Map terms whose value type is
Ω are called formulae. The formulae represent a higher order logic. The DL class
constructions of union, intersection, as well as existential and universal quantifi-
cation are definable as types using the power and abstraction type constructions.
Similarly DL property constructions are definable.

Classes The axiom sets used for representing Description Logics have a type
atom Thing. Subtypes of Thing are called classes. Type theory provides a corre-
spondence between subtypes of Thing and formulas of the form p : Thing → Ω
and a characterization of subtypes of Thing as abstraction types. An abstraction
type is one defined by a formula p : X → Ω using the rule:

p : X → Ω

{x : p(x) = true}
(11)

Any class A, i.e., subtype of Thing has a characteristic map charA : Thing → Ω
with

A = {x : CharA(x) = true} (12)

Further if A and B are classes then A v B is equivalent to A ∩ B = A. The
union and intersection of classes exist and their characteristic functions satisfy
charA∩B = charA ∩ charB .

Properties A property is a subtype of the product type (A,B) where A and
B are subtypes of Thing. Properties are in one-one correspondence with charac-
teristic maps whose domain is (Thing, Thing). Property composition is defined

8

and has the well-formedness rule:

p : (A,B), q : (B,C)

q.p : (A,C)
(13)

Note that property composition is given in reverse form from map composition.

DL constructions The DL existential and universal quantification types are
defined for abstraction types. For types X and Y an abstraction type B of X
and an abstraction subtype R of the product (x : X, y : Y) with respective
characteristic maps b and r, the universally quantified type and the domain and
range types are defined as

∀R.B = {x : ∀y.r(x, y) ⇒ b(y) = true} (14)

Dom(R) = {x : ∀y.r(x) = true} (15)

Range(R) = {y : ∀x.r(x, y) = true} (16)

and existentially quantified type is defined as

∃R.B = {x : ∃y.ε(y, r∗(x)) ∧ b(y) = true}. (17)

In (17) ε is an atomic map of type theory with ε : (Y, Power(Y)) → Ω and
r∗ : X → Power(Y) is the type theory construction for the non-deterministic
map corresponding to the property r. In Algos a functional property p : (A,B)
may be replaced by a Skolem map which is give by:

p : (A,B), Func(p)

p∗ : A→ B
, (18)

with the rule
< a, b >: p

< a, p∗(a) >: p)
(19)

General declarations such as p : Part(A,B)[k] can be defined within Algos. A
functional property declaration p : (A,B), Func(p) is equivalent to

A v ∃p[1].B (20)

In proofs functional properties will be replaced by their Skolem function.

Equalizers Algos has an equalizer type construction. Given a type A and two
functional properties p and q with the same domain and range, the equalizer
defines a subtype

A{p, q} = {x : x.p∗ = x.q∗}. (21)

The term x.p is the relational composition. The equalizer is the subclass of A
whose values under the maps p∗ and q∗ coincide. The rule is

a : A{p, q}
a.p∗ = a.q∗

(22)

The converse rule also holds.

9

Semantics of Structure Diagrams Syntactically a structure diagram is a
restricted Algos axiom set; the semantics is given by the Algos inference rules.
The model theory of a structure diagram is the same as for any Algos axiom set.
A model consists of a domain in which the individuals, classes, and properties
are interpreted in the standard way and in which all of the axioms are satisfied.

Theorem 4. All of the minimal models of a Structure Diagram are isomorphic.

An instance of the root may be added to the type theory generated by the
Structure Diagram axiom set. For any instance of the root class a finite set is
obtained by iterating the application of the part properties in these paths. The
orthogonality axiom for parts with the same range ensure that each instance path
is unique. All of the axioms are satisfied by the resulting part decomposition.
Any minimal model has this graph structure.

Decidability of Satisfaction for Structure Diagram Consistency Veri-
fication of decidability for satisfaction of a Structure Diagram results from the
fact that the internal formulas corresponding to a Structure Diagram are equiv-
alent to monadic Ackermann forumlae which are known to be decidable [1]. For
simplicity the same notation will be used for a class and its characteristic map.
In general a typed property declaration p : (A,B) corresponds to the formula

∀x∀y.p(x, y) ⇒ A(x) ∧B(y). (23)

However, the properties in a Structure Diagram are all functional and in type
theory these properties can be replaced by a Skolem map. A property assertion
of the form p : (A,B)[1] is equivalent to

∀x.A(x) ⇒ B(p∗(x)). (24)

where p∗ is the Skolemization map corresponding to the property p. The appli-
cation of p∗ to x is written as x.p∗ . All part property declarations are assumed
to be functional. A part path declaration corresponds to a formula of the form

∀xA(x) ⇒ A1(x.p1) ∧ . . . ∧An(x.p1. . . . pn). (25)

A connection assertion has the form A v A{π1, π2.c} where the πi are part
properties, as a connection is defined only for classes that occur as domain of
ranges of part properties. For each of the finite number of part paths a monadic
predicate eqπ1,π2,c(x) is defined enabling translation:

∀x.A(x) ⇒ eqπ1,π2,c(x) (26)

Each disjointness assertion A⊥B is equivalent to

∀x.A(x) ⇒ not eqp,q(x) (27)

and each orthogonality assertion p⊥q is equivalent to

∀xA(a) ⇒ p∗(x) 6= q∗(x). (28)

These formulas and the structure diagram assertions as represented within Algos
are equivalent in that the internal formulas are provably equal to true if and only
if the external type relations are provable within the first order theory.

10

4 Conclusion

A Structure Diagram abstracts the properties of diagrams used to describe the
properties of a structure such as the human heart. The embedding of a Structure
Diagram in type theory extends and generalizes the embedding of class diagrams
into DL. These diagrams are entirely within type theory and have both an in-
ference and a model theoretic semantics. Type theory is sufficiently rich that
other descriptive properties of biomedical structures can be described. The tech-
nique of exploiting the correspondence between types and internal formulas can
be extended to cover additional constructions which are useful for a DL. The
arguments given here will work in other type theories but are more direct in
Algos [4]. Algos is similar to the type theory in [3] based on equality. The major
difference between Algos and that type theory is that Algos is closer to the orig-
inal axioms for a topos. The differences between these alternatives are grounded
in the quest to develop a language to be used in a mechanized computational
context as opposed to just being talked about.

References

1. Ackermann, W., Solvable Cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1954.

2. Artale, A., Franconi, E., Guarino, N., Pazzi, L., Part-Whole Relations in Object-
Centered Systems: An Overview, Data and Knowledge Engineering 20, North-
Holland, Elsevier, 1996.

3. Lambek, J., Scott, P. J., Introduction to higher-order categorical logic, Cambridge
University Press, 1986.

4. Graves, H., Bijan, Y., Using formal methods with SysML in aerospace design and
engineering, Annals of Mathematics and Artificial Intelligence, Springer 2011.

5. OWL 2 Web Ontology Language, W3C Working Draft 11 June 2009.
6. Baader, F., D Calvanese, McGuinness, D., Nardi, D., The description logic hand-

book, Cambridge University Press, 2007.
7. Dumontier, M., Describing chemical functional groups in OWL-DL for the classifi-

cation of chemical compounds. OWLED, 2007.
8. Hastings, J., Dumontier, M., Hull, D., Horridge, M,. Representing chemicals using

OWL, description graphs and rules, 2010.
9. Horrocks, I. Kutz, O., and Sattler, U., The Even More Irresistible SROIQ, in Pro-

ceedings of the 10th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2006), pp. 57-67, American Association of Artificial
Intelligence Press, 2006.

10. Motik, B., Cuenca Grau B., Sattler, U., Structured objects in OWL: Representation
and reasoning. Proceeding of the 17th international conference on World Wide Web,
2008.

11. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., The description logic hand-
book, Cambridge University Press, 2007.

12. OMG Systems Modeling Language (OMG SysML), V1.2, 2010.

