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Abstract. Most engineering tasks require in-depth reasoning. For some tasks, automated 

reasoning is feasible and can provide high leverage for solving difficult practical problems. 

Engineering questions can be represented as questions about a model, provided the model 

contains sufficient domain knowledge. By embedding a model as an axiom set within a 

suitable logic, engineering questions translate into questions about axiom sets. Automated 

reasoning can potentially be used to answer these questions. Examples of engineering 

questions that can be represented as logic questions include verification of a system 

capability (or a requirement satisfaction) and verification of whether a design change 

invalidates design constraints. SysML is a general purpose graphical modeling language that 

can be used to represent the system structure, behaviour, parametric aspects, and requirement 

relationships.  Results for embedding the class diagram fragment of SysML into OWL are 

extended to cover other SysML constructs. Examples are given to relate a variety of 

engineering questions to axiom set questions that can be formulated as model queries, and 

illustrate how formal reasoning can be exploited to answer these questions. 

 
Introduction 

 

Engineering models in languages such as SysML (OMG SysML 2008) are used to represent, 

specify, and analyze systems. The integration of modeling with automated reasoning provides 

the potential to use models to answer engineering questions. The direct way to integrate 

reasoning with SysML is to embed a model as an axiom set within a logic. Of course the 

formal semantics of the logical system has to be in accord with the informal semantics of 

SysML. Otherwise reasoning may give incorrect results. The issue of representing 

engineering questions as logical questions is straightforward provided the model has been 

properly designed. For a properly designed model, an engineering question translates directly 

into a logic question.  The principles for constructing models to be used to answer questions 

apply even when automated reasoning is not used.  

 

The paradigm of representing engineering questions as questions about axiom sets is not new 

(Graves and Horrocks 2008). The direct approach of constructing an axiom set to represent 

an engineering problem has been adopted for specialized classes of problems, such as 

verifying safety critical software. However, directly constructing axiom sets to represent 

engineering problems is not in widespread use. Practically it has proven very difficult for 

engineers to develop an axiom set to describe a problem. Constructing a SysML model rather 

than an axiom set requires less specialized training than does learning to construct axioms 

within a logic system. Even though the axiom set and the model have the same information, 

the language for modeling is an efficient way of constructing an axiom set and opens a 

practical path to integrate reasoning with engineering development.  

 

This paper illustrates how reasoning can be used to answer a variety of engineering questions. 



Examples are given of how models are developed to answer engineering questions. These 

examples are used to show how reasoning about an axiom set answers the original question. 

Analysis of the axiom set resulting from a model provides useful information with regard to 

the model’s intended use. For example, if the model is intended to represent the detailed 

design of a system or component, then one likely wants all of the valid implementations that 

have the same structure. Results on embedding SysML models into a logical system (Berardi, 

et al. 2005) (Graves and Bijan 2011) are used to illustrate how engineering questions translate 

into questions about axiom sets which are amenable to automated inference.  

Reasoning Integration Overview 

This section uses a macro level example to illustrate a direct approach to the integration of 

reasoning with modeling. An engineering question is used to a develop SysML model. The 

model is embedded as an axiom set within a logic and the engineering question is answered 

by reasoning within the logic. Candidate logics which have been used in formalizing and 

integrating SysML with reasoning noted with the results which embed SysML into the logics. 

Subsequent sections look in more detail how engineering questions can be represented via 

models and how SysML modeling constructions map into candidate logics.  

 

Engineering questions that can be represented as questions about models include questions of 

system capability and design solution verification. For example, can an aircraft under 

specified operating conditions loiter in an area for specified time duration? The aircraft may 

be an existing aircraft, a proposed design, or a design modification. Simulation is the obvious 

method for understanding requirements and validating a deign. However, simulation in itself 

does not verify that a design solution satisfies the capability. The engineering question is 

answerable in the context of the assumptions and constraints on the aircraft operation. If we 

build a SysML model which contains all of the domain assumptions, then the question is 

equivalent to whether the axiom set corresponding to the model logically implies the loitering 

conditions. While including domain assumptions and design constraints requires effort, a 

strong case can be made to include this information in the application model even if 

automated reasoning is not used. Overlooking these assumptions is where most design errors 

occur.  

 

Figure 1 is a schematic diagram that shows the relationship between a SysML model and an 

interpretation. In this case the model represents an air system and its operating context; the 

interpretation corresponds the model elements to elements in a domain. The interpretation of 

the model shows an aircraft and a region of terrain as seen through a sensor display on the 

aircraft. The operator on the aircraft is attempting to identify a target from the video of a 

sensor display. A model may have multiple interpretations, where an interpretation is 

anything that satisfies the relationships within the model. Building a system description 

model does not itself guarantee that any interpretations of the model exist. A model that 

cannot possibly have any valid interpretations is called inconsistent. For SysML, an 

inconsistent model is one in which all of the blocks of the model have an empty interpretation 

in any domain.  

 



 
  

Figure 1. Relationship between Model and Interpretation 

 

In logic, the use of the term “model” is reversed from its use in engineering: In logic a model 

is an interpretation of an axiom set within a logical system. In engineering, a model is a 

representation or description of its possible interpretations. However, the concepts of 

interpretation in engineering and model in logic are similar. Logical systems typically have 

an inference semantics and a reference semantics. In a logical system, axioms are formulae 

which are assumed to be true. An inference semantics is given by rules which can be used to 

derive conclusions from axioms, i.e., other true statements.  The reference semantics for an 

axiom set describes a class of valid interpretations. The axioms are by definition true in any 

valid interpretation. Of course, an axiom set may not have any valid interpretations. The 

inference rules are sound if a statement derived from the axioms is true in any valid 

interpretation. The inference rules are complete when all statements true in the reference 

semantics can be derived from the axiom set.  

 

The reference semantics for a SysML model is an interpretation of the model. An 

interpretation is a collection of real or imaginary (simulation) subdomains of a domain which 

correspond the SysML types. The properties and inclusion relationships in the model are 

preserved in the domain. Any inclusion relationships between the elements of a SysML 

model are satisfied in the domain by the interpretation. The correctness of inference engines 

depend on the soundness and completeness for the logical system. The efficiency of an 

inference engine depends on the expressiveness of the language of the logic. When a model is 

embedded as an axiom set within a logic questions about model translate to questions about 

the axiom set. For example the question of model consistency becomes the question of axiom 

set consistency.  The question of whether a component or relationship be added to the model 

without making it inconsistent becomes the logical question of whether adding the statement 

corresponding to the model change make the axiom set consistent.  

 

Some of the candidate logics used as targets for embedding SysML are noted in the Venn 

diagrams in Figure 2. In each of these cases, a SysML model is encoded as an axiom set 

within the language of a logic. The axioms take different forms in OWL and in First Order 



Logic (FOL). In OWL the axioms are class inclusion assertions. In FOL the axioms are 

formulas defined in terms of quantified logical formulas using binary and unary predicates, 

i.e., predicates with two or one argument. The diagram in Figure 2 uses lines to indicate the 

embedding of SysML class diagrams in both OWL (OWL 2  2008) and in FOL, and 

correspondences between the two different forms of logic.  

 

Figure 2. Relationship of Candidate Logics 

 

 

Syntactically SysML and OWL languages have a lot of syntactic overlap. SysML uses a 

graphical syntax with elements for blocks, associations, part properties, and subclass 

relationships between classes. The OWL2, the most recent and precise version of OWL, uses 

classes, properties, and individuals. OWL2 as a conceptual modeling language uses the 

paradigm of representing knowledge as an axiom set (model in engineering terms) and using 

reasoning on the axiom set to answer questions. In conceptual modeling an axiom set is also 

called a Knowledge Base (KB). Where SysML models have been embedded within OWL2 

they are embedded as axiom sets.  

 

The formal foundation for OWL2 (Horrocks, et al. 2006) is SROIQ which is a Description 

Logic (DL) (Baader at al. 2010). SysML blocks and associations correspond respectively to 

OWL2 classes and properties.  When SysML is embedded in OWL2, model questions 

become axiom set questions. A fragment of UML, called class diagrams has been embedded 

within the Description Logic (DL) SROIQ (Berardi, et al. 2005). Class diagrams are models 

that use only blocks and binary associations. The DL is known to correspond to a fragment of 

First Order Logic. The results hold as well for the corresponding fragment of SysML. This 

embedding provides the integration of a fragment of SysML with OWL reasoning. In OWL 

consistency of an axiom set and logical implication are decidable. OWL2 reasoners are well-

developed and robust. They are able to reason about very large class diagrams.  

 

Many language constructions essential to SysML’s success are not covered by the class 

diagram embedding, for example structure diagrams. A structure diagram describes concrete 

structures which are assembles of parts and connections between the parts. Structure 

diagrams are common in engineering and science. An automobile model that contains a part 

decomposition with connections between the parts is a structure diagram. Finding the kinds 



of restrictions on axioms where the logical services are decidable has presented a challenge. 

Description Logic (DL) is a natural candidate for structural modeling. However, the ability to 

represent graph structures such as can be constructed with SysML Internal Block Diagrams 

(IBDs) is beyond the capability of OWL2. A SysML model of a structure can be translated 

into the language of SROIQ (Horrocks, et al. 2006). However, the resulting axiom set contain 

property equalities that do not satisfy the constraints of SROIQ axiom sets. OWL2 with a 

Description Graph (DG) extension has been proposed as a candidate for structural modeling. 

Analysis of application-use cases suggest that often the DL axioms, as well as the DG 

extension axioms, do not correctly capture the properties of the structures being modeled. An 

approach to the characterization of a SysML IBD as axiom set within an extended 

Description Logic has been described in (Graves and Bijan. 2011). A proof of the decidability 

of satisfaction for these axiom sets is in draft form.  

 
Other language constructions used in engineering which are not class diagrams are operations 

with arguments that are declared within a block. Dynamic behavior and time are also not 

included. The air system target identification example is outside the scope of class and 

structure diagrams. The full potential for integration of reasoning with SysML requires 

finding a way to build on and extend these results to embed SysML models as axiom sets 

within a richer logic where automated reasoning is still feasible. The results embedding a 

class diagram in a DL have been extended using a logical system called type theory (Lambek 

and Scott, 1986). Type theory contains both classes and formulae and a built-in 

correspondence between classes and properties with respectively unary and binary predicates 

within the type theory as well as with types in the type theory. The static part of SysML has 

been embedded into type theory (Graves and Bijan, to be published 2012). The extension of 

the embedding of class and structure diagram fragments of SysML is needed to answer 

questions such as the aircraft loitering question. The same kind of reasoning used in OWL2 

can be used to determine whether the resulting axiom set is consistent or inconsistent, which 

gives an answer to the engineering question, provided that decidability results hold. Logical 

implication problems such as the loitering question can be represented within type theory. 

Type theory extends OWL2, and the embedding of SysML into type theory is consistent with 

the class diagram embedding of SysML models within OWL2. 

 

Representing Engineering Questions as Model Questions 

 

This section introduces an engineering question and sketches how a SysML model can be 

developed to assist in answering the question.  The example is taken from (Graves and Bijan, 

to be published 2012). A general method for embedding a SysML model within a formal 

logical system is outlined. When the model is constructed additional blocks are introduced 

into the model. These blocks can be defined in the logic embedding SysML. The new classes 

are defined using the constructions familiar form mathematics. These classes are used in the 

consistency checking of the resulting axiom set.  The reasoning results are used to answer the 

engineering question. More detail on how the embedding works is given in subsequent 

sections.  

 

A realistic engineering question is whether a specifically equipped model of aircraft can 

perform target identification under specified operation conditions. For simplicity we assume 

that the answer is true or false. The approach outlined extends to probabilistic statements. In 

engineering practice the answer to a question, such as the loitering question, uses analysis 

based on engineering models and possibly simulation. The quality of the answer depends on 



the accuracy and detail of the engineering models used.  

 

A question such as the loitering question has to do with system interaction with its operation 

environment. By constructing a SysML model that contains a model of the aircraft and the 

target, the physical environment specified by the operating conditions enables the 

assumptions to be explicit. Figure 1 represented schematically the relationship between a 

model and its interpretation for this problem.  

 

Figure 3 illustrates a more detailed top level diagram for a model of air vehicle and its 

operating context. The model has a top level block, called MissionDomain. MissionDomain 

contains components for the aircraft, the physical environment, and the target. By using a 

single composite model there is less risk that inconsistent assumptions are used. Top level 

assumptions and constraints about how the subsystems interact with each other and the 

environment are represented with constraint blocks that are part of the MissionDomain block. 

The diagram describes what components occur in an interpretation but do not show any 

constraint information.  

 

 
 

Figure 3. A Block Diagram for the Mission Model 
 

By using SysML constraint constructions operating conditions, flight dynamic models, 

electro-optical models of sensors, and other factors that influence the answer can be 

represented as component models. To answer the target identification question new blocks 

(classes) corresponding to these diagrams need to be defined. 

  

SysML models contain variables in the form of block value properties. Conceptually the 

value properties are the state variables of the block. For example, the loitering conditions can 

be expressed as a Boolean valued operation whose arguments are variables related to the 

effects of altitude on operating performance and other constraints. SysML constraint 



properties express equations that can be bound to value properties. The variable values which 

satisfy a constraint equation define a subtype of the type of tuples that satisfy the equation.  

 

The diagram in Figure 4 is a SysML parametric diagram. The diagram uses a dynamic model 

for the aircraft motion. The motion is a functional relation of the flight commands and the 

wind in the operating context. The diagram contains three rectangles labeled Operator, 

Physical Environment, and Air Vehicle. These represent blocks. The small rectangles inside 

represent value properties. The rounded corner rectangle in the diagram represents a 

functional relation which specifies the air vehicle motion as a function of the operator 

commands and the wind.  

 

 
Figure 4. 

 

In Figure 4 the value properties flightCommands (fltCmds), wind, and rateOfMotion are 

variables with respective types, cmd, wind, and Rate. The parameters fltCmds, wind, and 

motion in the constraint property block are bound to the value properties. Informally the 

parametric diagram specifies a functional relation which defines a subtype of the product type 

of the three types, cmd, wind, and Rate. This type can be written as  

 

 { <x,y,z> : z = fn(x,y) } 

 

where <x,y,z> is a 3-tuple and x, y, and  z are variables with respective types cmd, wind, and 

rate, and fn is a function. This class is not definable within SysML but within the logic in 

which SysML is embedded. The class is defined using a set-like abstraction construction. 

 

The SysML mission model contains a lot of information not shown in Figures 3 and 4. This 

information includes models of aerodynamic performance of the aircraft, the effect of aircraft 

motion on the stability of the sensors, and further detailed decomposition of the air system. 

The aircraft has a target identification operation defined in terms of operations of the 

aircraft’s system components such as a sensor. For simplicity we assume that identifytarget is 

a composition of functions defined for the aircraft components. 

 

From the mission model the totality of the value properties that occur in any of the blocks are 

variables in the logic. They represent the state space for the application. Schematically we let 



<x1,…xn> be an n-tuple of the variables that occur in the mission model. Then the operating 

conditions can be represented as 

  

 {<x1,…xn>  : idFeasible(x1,…xn) = true }. 
  
For example, if operatingConditions is an equation defined for the variable types of the 

mission domain model, then using the abstraction construction as a block construction, the 

constraint defines the block as 

 

 { <x1,…xn> : operatingCondition(x1,…,xn) = true }. 

 

Conversely a subtype A of X has a characteristic predicate (Boolean valued operation) A^ 

which has the property that for any tuple of individual ai:X, 

  

 <a1…an>:A iff A^(a1,…,an) = true.  

 

The correspondence between classes and formulas can be used to characterize exactly when 

an axiom set is consistent. A class diagram is consistent if it admits an instantiation, i.e., if its 

classes can be populated without violating any of the requirements imposed by the diagram. 

A class C is satisfiable in a class diagram if it is not equivalent to Nothing. When the diagram 

is not consistent, then Nothing = Thing. Of course for arbitrary type theory axiom sets, the 

decidability properties are lost. However, for some cases correspondence between classes and 

formulas can be used to reduce subclass assertions to be DL like. In the SysML to type theory 

embedding, axiom set consistency is equivalent to the satisfiablility of the formula that 

represents the conjunction of the axioms.  

 

The formalized requirements are a subtype of MissionDomain  

 

 {x : idFeasible(x) = true } 

 

where x is an n-tuple of variables corresponding to the state space. The abstraction type 

consists of those tuples which satisfy the further constraint identificationCapable. We 

introduce the name MissionDomain{identificationCapable} for this type. If we assume 

requirements are consistent 

  

 {x : idFeasible(x) = true }  ≠ NoThing.  

 

Note that if  

 

 {x : idFeasible(x) = true }  = NoThing, 

 

nothing can satisfy them. The type  

  

 { x : correct(identifytarget(x)) = true } 

 

is defined where correct(identifytarget(x)) is the result of evaluating the target identification 

operation. The question of whether the identifytarget operation gives the correct answer can 

be written as  

 

 { x : idFeasible(x) = true }  ⊑ { x : correct(identifytarget(x)) = true }. 



 

By using the subtype construction we have implicitly embedded the SysML model as an 

axiom set within type theory. Type theory has an abstraction construction which enables one 

to define subtypes from relations (formulas). These axioms can be equivalently expressed in 

FOL.  

 

The problem is a logical implication problem: Do the mission model axioms imply the 

loitering conditional? If the augmented axiom set is inconsistent, then the loitering statement 

cannot possibly be true with respect to the mission model. Examples of whether a design 

change introduces inconsistency work similarly. The correspondence between classes and 

formulas can be used to characterize exactly when an axiom set is consistent. A class diagram 

is consistent if it admits an instantiation, i.e., if its classes can be populated without violating 

any of the requirements imposed by the diagram. The corresponding formula admits a model 

in which at least one class has a non-empty extension. When the diagram is not consistent, 

then Nothing = Thing. 

 

To attempt to prove this assertion, one typically uses assumptions of the form 

 

 A ⊑ { x : correct(identifytarget(x)) = true } 

 

to attempt to show 

 

 { x : idFeasible(x) = true } ⊑ A.  

 

This gives the desired conclusion.  

 

We have modelled an application, seen that the answer to the capability question is 

equivalent to whether a class is equal to Nothing, i.e., is empty. We have suggested what a 

proof looks like.  

 

The embedding of the model into type theory uses several principles: 

 

1. Value properties of components of the model correspond to variables in the logic. 

2. The logic contains product types corresponding to the types of the value properties. 

3. Each formula with variables x1,…,xn, defines a subtype of the product which are the 

tuples of values for which the formulas are true. 

4. Parametric diagrams correspond to truth-valued operations defined for their variables. 

 

The correspondence between classes and unary predicates (and properties and binary 

predicates) that holds between DL classes and FOL predicates holds in type theory. This 

correspondence can be used to extend the ideas of DL reasoning to a much larger fragment of 

SysML. In the following we show how DL class constructions can be used to represent 

further kinds of assertions. 

 

Class Diagrams. This subsection shows how specific SysML language constructions are 

embedded as both formulas and as DL assertions. Multiple authors have observed blocks, 

associations, and specialization correspond directly to OWL classes, properties, and subclass 

relationships. Berardi (Berardi at al 2005) uses the FOL representation to explain the 

semantics of class diagrams. Both the formula and the DL representations are equivalent in 

that from one the other can be derived. In the process we introduce new DL class 



constructions that are needed for embedding SysML models. These constructions will be 

used in the reasoning examples. By the correspondence principle between DL and FOL we 

use the symbol ^ for the predicate corresponding to concept or role. 

 

 
Figure 5. A Class Diagram 

 

The diagram in Figure 5 is a simple kind of model called a class diagram. A class diagram is 

a SysML model which only uses blocks and binary associations, with subclass relations 

between blocks. The diagram has three blocks, Pump, MechanicalDevice, and Tank. The 

arrow with the triangle head indicates that Pump is a subtype of MechanicalDevice. The 

translation of the block inclusion embeds directly as the DL assertion 

 

 Pump ⊑ MechanicalDevice. 

 

Informally, the diagram means that any pump is a mechanical device. In the correspondence 

between DL and FOL, classes are embedded as unary predicates, and roles are embedded as 

binary predicates. The diagram does not reference specific individuals, only concepts or 

classes of individuals. If one has an instance of the conn relation between a pump and another 

individual, then that individual is a tank. If one views the predicate Pump^ and conn^ as 

recognition procedures, this is what the FOL axioms say. Using the correspondence principle 

inclusion Pump ⊑ MechanicalDevice is translated as 

  

 x. Pump^(x)  implies MechanicalDevice^(x). 

 

Note that this formula is a statement that uses individual variables and universal 

quantification. In DL the correspondence principle is informal. In type theory the 

correspondence principle is part of the logic. For example, if a formula is defined for 

individuals of type X, which we write as f(x:X):Bool, then we can form the abstraction type 

as { x : f(x) = true }. Conversely, for a type Y which is a subtype of X, we can form its 

characteristic Boolean valued operation, X^ where X^ is typed as X^(x:Y):Bool which as the 

property that X = { x : x:Y and^(x)} = true }. 

 

The informal semantics of arrow in the diagram labeled conn from Pump to Tank is that 

when a pump is connected via conn, then the pump is connected to a tank.  This translates as 

  

 x. Pump^(x)  implies y.conn^(x,y) implies Tank^(y), 

 

which provides a formula semantics for the connection arrow. By using a DL class 

construction, called value restriction, the formula can be translated into DL as the equivalent 

class inclusion 

 



 Pump ⊑ conn.Tank. 

 

By using type theory the value restriction type can be defined as 

 

 conn.Tank  = { x : (y.conn^(x,y) implies Tank^(y)) = true }, 

 

which makes clear the correspondence between the class conn.Tank  and its corresponding 

formula 

 

 y.conn^(x,y) implies Tank^(y). 

 

Structure Diagrams.  The approach used for class and properties can be extended to other 

constructions found in SysML block diagrams. Figure 6 contains two diagrams which are 

views of the same model. A water molecule has three parts, an oxygen atom and two 

hydrogen atoms. The oxygen atom is connected to each of the hydrogen atoms with a 

bonding relation. 

 

 
 

Figure 6. A Model for the Water Molecule 
 

The BDD shows that the water molecule has three part properties. Each has a multiplicity of 

1 which means that any water molecule instance has exactly 1 of each of the three parts.  The 

IBD shows internal connections between the three part properties. In the IBD the rectangles 

represent part properties rather than blocks. For example, the hasOxygenAtom part is 

connected via the covalentBond property with the hasHydrogen1 part property. 

  

The formula representing the hasOxygenPart property relation with water is expressed with 

 

 ∀x!x.Water^(x) implies hasOxygenPart1^(x,y) and Oxygen^(y). 

 



This says that a water molecule necessarily has exactly one oxygen atom. The formula can be 

represented within DL using the existential type construction with 

 

 Water ⊑  Oxygen^(x. hasOxygenPart1^*). 

 

The Water model also has two covalent bonds. The informal semantic for the arrow in the 

IBD between hasOxygen:Oxygen and hasHydrogen1:Hydrogen[1] is that for any water 

molecule its oxygen atom part is bonded to its hydrogen1 part. We can represent this as a 

formula. The easiest way is to make use of the fact that the part properties are functional and 

replace a part property p with a function p*. For x:Water we write x.p* for the value of the 

function. Using this replacement we have 

 
 ∀ x. Water^(x) implies x.hasOxygen^*.connectbond^ = x.hasHydrogen1^*. 

 

This formula can be translated into a DL if we make an extension to standard DL. The 

extension is to introduce a new class construction, called an equalizer. If we use this 

construction then the formula translates into the class inclusion 
 

 Water ⊑   Water{hasOxygen.connectbond1, hasHydrogen1}  

 

where the equalizer can be defined in type theory as 
 

 Water{hasOxygen.connectbond1, hasHydrogen1}=  

  { x : (Water^(x) implies x.hasOxygen^*.connectbond^ = x.hasHydrogen1^* ) = true }. 

 

Of course to expect to do reasoning with constructions like this, one must verify that for the 

axiom sets which use this construction, consistency is decidable. However, as will be shown 

elsewhere, this fact is true for the extended DL. These diagrams are called Structure 

Diagrams. 

Using Reasoning 

 

One place where reasoning can be used is to check design consistency as it is developed. For 

this to work the models have to contain the constraints as assumptions. Of course developers 

are not yet in the habit of including constraints as part of their models. However, design 

inconsistency resulting during design development is one of the major reasons for rework, 

additional time and money even though it is a bit hard to document. The way in which design 

models are typically developed is by adding components and making connections between 

components.  

 

When adding a component to a system which has to be connected to another system such as a 

hydraulic or electrical system, there is the potential that the new connection may violate 

constraints regarding admissible connections to the hydraulic system, for instance. The 

violation of a connection constraint may not be apparent from simply making the connection 

to a component of the hydraulic system. Using DL constructions, connection constraints may 

be expressed within the model and the consistency of the connection constraints checked 

when changes are made.  In the following example the constraint on the hydraulic system is 

that the block Source is constrained to have at most three connections. A connection is not 

just a direct connection of a block to Source, but any path (composition) of connections from 

a block to Source. 

 



 
 

 

Figure 7.A Diagram Whose Connections Violate a Design Constraint 
 

Figure 7 is a diagrammatic representation of a SysML Block Definition Diagram (BDD) that 

contains five blocks, each of which is a system component. The Source block has a constraint 

which specifies that the sum of all connections must be less than the maximum of 3. The 

connections from Source are not just the direct connections to A, B, and C, but any path 

connections formed by composition of connection properties. 

 

A variant of the problem of adding a component that invalidates design constraints is 

illustrated in Figure 8. Adding a component model that has its own constraints for its use, 

may be incompatible with the component model being included as a component of a larger 

model. For example, a model of a pump may have been developed for use as a component of 

a specific kind of assembly. When it is used in the assembly that it was developed for, it is 

always connected to a specific kind of valve. However, the pump model may be incorporated 

into other kinds of assemblies where the original assumption is not needed and may be 

inconsistent with the new usage. 

 

 
Figure 8. A Pump Model Which Contains Constraints on Connections 

 



The pump model in Figure 8 expresses the constraint that it can only be connected to 

components of type B with the subclass relation 

  

 Pump ⊑ conn.B.  

 

If this model is imported to be a component of a larger model, and one attempts to connect 

Pump to a block A where A and B are disjoint, then the connection violates the composite 

model as A and B are disjoint. To use the pump model the assumption in the pump model 

must be modified. 

 

The kinds of reasoning used in the design consistency and the target identification problem 

are different. In the design consistency problem the abstraction construction was used to 

define subtypes of a product type of type Number. The arguments for inclusions such as 

occurred within the target identification verification required more numeric analysis and 

computation. In general, these kinds of problems are not in a fragment of SysML where the 

entire problem is algorithmically decidable. However, when the component inclusions are 

verified, which may take considerable mathematically oriented possibly non-automated 

reasoning, the final result can be verified from the component inclusions.  

 

Conclusion 
 
The use of reasoning to answer engineering questions has been illustrated with three 

examples. The first was a capability verification, a verification that an aircraft model can 

perform a specific function. The verification is contingent on the validity of the context 

model with respect to the real world domain. The second two examples are variants of the 

development problem of maintaining design consistency by verifying consistency of design 

change. The examples show how reasoning can be integrated with SysML. One lesson 

implicit in the discussion is that one can and should include assumptions and constraints in 

models even if automated reasoning is not used.  

 

The reasoning in the examples is justified by a semantic embedding of a fragment of SysML 

into a type theory logic. While some SysML models can be embedded as axiom sets within 

OWL2, many important SysML language constructions, such as an IBD cannot be embedded 

within OWL. However, important fragments of SysML can be embedded within a DL 

extension in which deterministic reasoning is possible.  

 

Analysis of the examples suggests that a number of additions to the SysML language would 

be useful. These include adding: 

 

 DL class and property constructions 

 Individuals 

 “Function call” to block diagrams 

 Abstraction. 

 

A bolder step would be to use an engineered version of type theory as the foundation for 

SysML. The engineered type theory could be part of the SysML specification. To facilitate 

the use of reasoning with SysML, a formal semantics is needed as part of the SysML 

specification. Type theory provides the language extensions suggested by the examples with 

a formal semantics well adapted for use with inference engines. One of the next steps to 



extend the use of reasoning for SysML is to find axioms for behavior that are amenable to 

mechanical inference. Again type theory is well suited for representing behavior.  
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