
A Practical Doctrine for Mathematical Applications
Henson Graves
Algos Associates

2829 West Cantey Street
Fort Worth, TX 76109 United States

Abstract: A doctrine, in the sense of Jon Beck, is outlined for representing and reasoning about mathematical applications.
The doctrine is a two category whose objects are axioms sets and whose morphisms are functors. The use of this doctrine for
developing and reasoning about axiom sets corresponds closely to informal practice, but differs from textbook development. An
application axiom set is specified by a signature and formulae in the language of the signature. Each application axiom set uses
a base language with term constructions from topos theory. The axioms are Horn rule axioms. These rule axioms sets generate
a topos as their deductive closure. A First Order Logic is used to express the axioms, but extends standard presentations in
that terms are allowed to have decidable preconditions for being well-formed. Constructions such as composition of maps are
defined as functions terms. The axiom sets are represented as tuples within the 2-category doctrine. The 2-category is a meta
logic for operating on axiom sets and maps between them. The doctrine is also a specification for a class of software tools for
developing and analysing axiom sets that represent applications.

Keywords: axiomatics, category theory, engineering models, doctrines, ontology, topos theory,type theory

1. Introduction
An approach to axiomatics for science and engineering, as well as mathematics, in the tradi-
tion of William Lawvere, Lawvere (2005), and Andrei Rodin, Rodin (2014) is outlined. The
approach uses a doctrine to represent axiom sets and transformations between them. The use of
a doctrine, in the sense of Jon Beck, as a foundation for axiomatics accords well with a state-
ment by Jaakko Hintikka on the subject of axiomatics, Hintikka (2011). Hintikka notes that
axiomatics requires logic in two different senses. First there is the logic that is being used in an
axiomatic theory itself, in deriving theorems from axioms. Secondly, the logic for the metathe-
ory of the axiom sets used to obtain results are about the theories. The objects of the doctrine
outlined are axiom sets and the maps are logical functors between axiom sets. The logic of the
doctrine is the meta logic for the axiom sets. This doctrine can be interpreted in the category of
categories. Its significance for engineering and science applications is that it is a specification
for a class of software tools for developing and analysing axiom sets that represent applications.

The axiomatic representation of scientific theories has a long history. However until recently
axiomatizations have not played a significant role in everyday engineering and science applica-
tions. This is changing. The development of models, in the engineering sense, as descriptions of
systems under design or analysis,is increasingly becoming the authoritative information source
in application development. There are well developed modelling languages and tools for au-
thoring and analysing models with widespread industry use. While engineering models are
not generally presented as axiom sets, there are results embedding engineering models in logic
Berardi et al. (2005), Graves & Bijan (2011). These results mean that engineering models can
viewed as axiom sets with the potential for using automated reasoning to solve application prob-
lems. Currently, model developers often make assumptions which are not explicitly formalized
within their models. However, this implicit knowledge can be formalized within axiom sets
which extend the informal models. Formalizing implicit knowledge as part of models as axiom
sets becomes increasingly important. System analysis based on models which have undergone
validation are now often taken as legal determinates of system behaviour. In the following en-
gineering models will be identified as axiom sets within a logic. The issue is what kind of logic
is adequate to capture the intent of these models and to operate on the axiom sets as objects.

Many everyday modelling applications including vehicle and molecular structure design and
analysis require a language with an expressiveness comparable to set theory. Patrick Suppes,
Suppes (2002) has suggested that no standard first order theory is sufficient for science applica-
tions as physics can not be represented in these theories. He suggests using set theory. Set theory
is not well suited for automated reasoning, as the axioms are not very algebraic and extensive
use of existential quantification is made. Set theory, however, is not the only choice of language
with sufficient expressiveness. An elementary topos has the expressiveness needed and are very
algebraic. However, elementary topos theory also employs full first order logic with existential
quantification, which is also not conducive to automated theorem proving. Topos theory axioms
can be modified to make them suitable for automated reasoning.

The axioms for an elementary topos, with one exception, subobject classification, are readily
put in a rule form suitable for automatic reasoning. The axioms for products, equality, subtypes,
and power types are all known to have rule forms, Lambek & Scott (1986). A modification of
the subobject classification axioms can be given as Horn rules in a first order language. The
replacement axiom is described briefly in Section 2.2. The axioms for the language construc-
tions generate a topos as their deductive closure. Application axioms in the form of rules also
generate a topos which is a quotient of the free topos generated by the language axioms. This
axiomatic formalism can be used for embedding models in a variety of modelling languages
including SysML Friedenthal et al. (2006) and Description Logics Baader et al. (2003).

The logic used to formalize the topos-based axiom sets is a species of First Order Logic.
However, the first order axiomatization allows function terms to have definedness conditions.
Operations such as map composition are represented as first order function symbols which have
preconditions for being well-defined. The use of rule axioms for the topos language construc-
tions logic satisfies this criteria. Formulae are generalized rules (Horn clauses with a single
consequent where the clauses are atomic formulae which include negation only for equality).
This form of axioms is sufficient to represent a wide class of applications and the reasoning can
be performed efficient inference systems Graves & Bijan (2011). By extending standard First
Order Logic for conditionally defined term constructions models of a theory within a category
coincides with functors defined for a theory. Using a conditional logic provides a unification
between models of theories and a funtors. Interpretations of function terms with definedness
conditons are required to be defined only which their definedness conditions are satisfied. Map-
pings between the axiom sets are functors interpreted within a category of toposes.

In application practice, as well as mathematics practice, one generally works with multiple
axiom sets (models in the sense of science and engineering). In mathematics axioms are often
specified for a concept, such as a group, in First Order Logic with equality. A group is then
defined as any structure which satisfies the axioms. The development of the theory of groups,
for example, Bourbaki (1948), takes groups as objects, classifies them, and constructs map-
pings between them. This development is usually done informally in set theory. Modelling in
product development is similar. One might develop design model and refine this model into an
implementable design which meets requirements criteria. For product design models axioms
are added and modified to achieve an implementable design. The development process, includ-
ing design and analysis, generally makes use of multiple models of physical components to be
incorporated into a design and physics models which are used in models of the environment in
which a product is designed to operate. Application development tools generally not only allow
a author to develop a model, but operate on multiple models and map between models. The
objects are the axiom sets and the models are logical functors. The logic of the doctrine extends
the logic of the axiom sets to represent axiom sets as tuples which contain the signature and
axioms.

Mathematics and engineering development take place in a language in which reasoning is
done within the theory of an axiom set, and where axiom sets can be packaged as modules
which can be operated on and reasoned about. By including in each application axiom set the
language constructions and axioms for a topos, one obtains a common ontology in which to
integrate and combine multiple axiom sets. The use of a base axiom set for applications is an
extension of the capability of engineering modelling tools to provide a base collection of data
type constructions and operations. The application axiom sets generate a topos as the deductive
closure of the combined axioms. Axiom sets, by including the topos signature and axioms, can
use as much mathematical structure language as needed. Axioms can be given for concepts such
as a group, a finite state machine, or representations of engineering and science models. The
application axioms together with the ontology axioms can be used to do elementary reasoning
within the ontology. Reasoning within an axiom set can be done using natural deduction proof
rules and term rewriting for equality.

The packaging of axiom sets as objects and functors as morphisms yields a doctrine. As a
doctrine the axiom sets are represented as tuples which contain the topos signature and axioms,
as well as symbols and axioms for the particular application. This doctrine of axiom sets and
functors is practical, not only in the sense that it conforms to mathematical practice, but is also
suitable for implementation as an interactive computational system. The doctrine corresponds to
an abstract specification for a model/axiom set software development tool. It elaborates features
found in many current model development tools. A detailed presentation of the formalism can
be found in Graves & Bijan (2011). Axiom sets can be developed for product designs within
engineering modelling tools and automatically exported to reasoning engines. Reasoning both
within an axiom system and about axiom systems can be used to solve common engineering
problems. The result is an integrated framework suitable for interactive development within a
theorem proving and proof checking computational system.

2. Engineering models as axiom sets
An engineering or science model, such as an aircraft design model or a model for the human
heart, can be expressed as axiom sets in a language with the map and type constructions of topos
theory. Application models are often informally represented as directed graphs. The nodes of
the graphs are types, such as the type of a vehicle engine, and the arrows are associations,
such as the association of an instance of a vehicle type with its engine. Formal modelling
languages such as SysML which have a graphical syntax use this kind of primitives. In SysML
each association has a domain and codomain type. For example, a design specification for a
vehicle may use types for components such as engines and wheels. The structure of a vehicle is
described by associations such as the specification that each vehicle has an engine and has four
wheels all connected in a specific way. In detailed models component attributes specify form,
fit, function, and material composition. The models may also specify constraints on interactions
between components, for example, the maximum pressure permitted on oil lines. When these
constraints are violated the model becomes inconsistent in the sense that their are no valid
implementations.

What can we say about the purpose of an engineering model and how a model can be used
to solve problems? In the engineering of mechanical and biological products models are used
to analyse the structure and behaviour of a system of interest. In the case of a simple molecule
such as H2O one may not think any special machinery is needed. However, when design-
ing molecules for drugs or analysing them we may need to determine if a molecule contains
instances of a particular substructure such as a carbon ring. For an aircraft we may want to
determine what components can draw current from the electrical system. Many engineering

problems translate into the question of whether an axiom set is consistent. A model can be used
to answer these kinds of questions, provided we are certain the model precisely describes the
systems of interest.

How can we be certain that the model describes the systems of interest and only those sys-
tems? This is a meta theoretical question in sense mentioned by Hintikka, as it is a result about
the model. For structural models we may be able to answer this question when, for example,
we can prove that all of the realizations of the axiom sets have the same structure. In the case
of H2O this means that all realizations of the axioms within a logical model, i.e., individual
water molecules, have exactly 2 hydrogen atoms and 1 oxygen atom connected by bonds in a
specific way. For aircraft and other mechanical products extensive methodology and procedures
are employed to validate models. This topic is also meta theoretic.

2.1. Examples
Three examples are used to motivate the kind of logic needed to represent engineering and
science models as axiom sets, one mathematical, one computer science, and one molecular
science.

2.1.1. Water
Consider building an axiom set for the class of H2O molecules. An individual molecule has
three atoms, an oxygen atom and two hydrogen atoms. The oxygen atom is connected to each
of the hydrogen atoms with a bonding relation. An axiom set whose logic models (valid inter-
pretations) consist of one or more H2O molecules can be given using the signature below.

H2OMolecule =< H2O,Hydrogen,Oxygen,

hasHydrogen1 : H2O → Hydrogen,

hasHydrogen2 : H2O → Hydrogen,

hasOxygen : H2O → Oxygen,

covalentbond1 : Image(hasOxygen)→ Image(hasHydrogen1)

covalentbond2 : Image(hasOxygen)→ Image(hasHydrogen2) (1)

The signature uses two kinds of terms, which we call maps and types. The symbols H2O,
Hydrogen, and Oxygen are types. The symbols such as hasHydrogen2 and covalentbond1
are maps. An expression such as hasOxygen : H2O → Oxygen specifies a domain and range
type for the map. The map associates water molecules with oxygen atoms. An individual water
molecule is represented as a map which has its domain a special type, One, called the terminal
type. Note that the domain and ranges of the covalent bonds are not atomic types, but use as
their domain and range types images of the part maps. The range type of a water molecule is the
type H2O. The expression Image(hasOxygen) is a type construction is used to represent the
oxygen molecules which as part of a water molecule. The hydrogen atoms which occur within
an H2O molecule is a subclass of hydrogen atoms.

Axioms can be given to express that atom types are disjoint which we write as

Oxygen ⊥ Hydrogen. (2)

An axiom that says that the same hydrogen atom in a molecule cannot be used by both part
relationships

hasHydrogen1 6= hasHydrogen2. (3)

Other conditions can be given to ensure that any molecule in a model has the expected structure
of exactly three atoms connected in the specific way. While the axioms for the H2O molecule
have only been indicated, they can all be given as Horn rules.

We have given a signature and some of the axioms for the H2O molecule axiom set, but
we haven’t said exactly what logic the axioms are expressed in. In engineering parlance the
H2O molecule is a use case to help us determine the requirements for a suitable logic. The
notation used looks very much like that used for sets and functions in mathematics. However,
the physical interpretation of types and maps is quite different. For example, the type Oxygen
is not interpreted as a collection of atoms, but corresponds to our ability to recognize that a
map has Oxygen as codomain type. This kind of interpretation is much more in accord with
Lawvere’s concept of functorial semantics. Lets look briefly at two more examples, groups and
finite state machines. Both occur in mathematics and in applications.

2.1.2. Groups
For the development of group theory, as opposed to the axiomatization of groups, one gener-
ally starts with a signature which contains function symbols for the identity element, element
composition, and for the inverse of an element. For example one might start with

G =< G,

id : G→ G,

◦ : (G,G)→ G,

inv : G→ G,

id ◦ g = g ◦ id, ... > . (4)

At this point we note only that the axiom set is represented as a tuple whose components are
expressions which use syntax familiar from set theory and topos theory.

2.1.3. Finite state machines
A finite state machine is usually presented using language constructions familiar from set theory.
For example, a deterministic finite state machine is generally represented as a quintuple

F = (Σ, S, F, s0, δ), (5)

where Σ is the input alphabet (a finite, non-empty set of symbols). S is a finite, non-empty set
of states. s0 is an initial state, an element of S. F is the set of final states, a (possibly empty)
subtype of S. δ is the state-transition function: δ : S × Σ → S (for a nondeterministic finite
automaton δ is δ : S×Σ→ P(S) where P(S) is the power type of S. This description is really
little beyond the signature. The description for a finite state machine can be made more precise
by adding typing information for the symbols in the signature. The representation

F =< Σ, S, F, s0, δ, s0 : One→ S, δ : S × Σ→ S, F v S > (6)

expands the quintuple to provide typing information for the symbols in the quintuple. The
behavior of a FSM is often described by rules. For example, a FSM which has two states, on
and off and rules which turns itself off when it is on and conversely can be specified using
notation for a case construction (coproduct) with:

(Σ, {on, off}, s0 = off,

δ = caseof(on→ on := off, off → off := onn), F = on, off) (7)

Note that the specification for a FSM uses additional language constructions for Cartesian prod-
uct and a subtype relation v. Informally the axiom set specifies a class of FSM. With the
addition of the on− off axioms a further specialized subclass is specified.

2.2. Axiomatics
From the examples, we have an indication that the paradigm of axiom set as building block
works for engineering and science applications, as well as mathematics. Before addressing the
packaging axiom sets as objects and transformations between them as morphisms, i.e., as a doc-
trine, lets go back to informal mathematics used within an axiom set to see how these concepts
can be formalized in a form suitable for automated reasoning in science and engineering.

The language constructions of the examples include composition of maps, tuples, product
types, the image type, and subtype relations. Additional examples use other constructions famil-
iar from mathematics. As noted in the introduction, these language constructions can be given
axioms that can be used to derive consequences. The axioms for the language constructions
are derived from topos theory. The logic used present axioms for the language constructions as
well as represent the application axioms is first order, but differs from standard presentations
in that term constructions which have decidable definability preconditions are admitted. This
extension enables the axiomatics to conform much more closely to informal practice, but in a
well defined sense, the extension is hygienic. For computational tractability the axiom sets are
restricted to rule axioms.

As an example of how axioms for maps and types can be given, consider that informal math-
ematics and mathematical applications often use operations which are not totally defined. For
example, composition of maps is well-formed when ranges and domains match appropriately.
This is expressed as an axiom

f : A→ B, g : B → C ⇒ f.g : A→ C (8)

where f.g is the notation for the composition of f and g. Composition terms are interpreted
as being defined only when the interpretation of their definition conditions is true. In standard
FOL operations represented as function symbols are required to be total in their interpretations.
This constraint makes first order axiomatization of a directed graph or a category difficult as
the partially defined operations have to be represented as relations. However, these axioms can
be expressed in a form in which new function terms do not depend for their introduction on
preconditions that require provability of something. This condition has been called Tarski’s
requirement for the Hygiene of Formal Systems. First order reasoning works normally in this
context and is less messy than representing the map constructions as function relations, or using
a logic with explicit partial functions. Proofs use standard natural deduction inference rules.

Axioms which satisfy the hygiene conditions can be given for the language constructions
from topos theory. Existential axioms from topos theory are replaced by function constructors.
The preconditions for well-definedness are decidable. Axioms may require proving precondi-
tions in order to make use of the conclusion. The axioms for the map and type term construc-
tions are Horn clauses with a single consequent where all of the clauses are atomic or negation
of map equality. By extending the signature of the base and axioms for the language construc-
tions, axioms sets for application can be given. These axioms are also in the form of generalized
rules. In addition predicates on the symbols of the signature are allowed. Reasoning using rule
axioms is computationally efficient.

This form of axioms for a category has the following consequence. An interpretation only
requires composition and other constructors to be defined, when the interpretation of the de-
finedness conditions are met. The definition of model for an axiom set coincides with the
definition of a functor from the axiom set to a category. The models of axiom sets are functorial
models. This suggests that not only that one should view fol logic as a special case of FOL with
definability preconditions, but that standard FOL needs to accommodate category theory.

Axioms for products, sums, subtypes, exponentials, and powers can be given with decidable
predefinition rules. The notation for the product type constructor is:

(X1, X2) (9)

and the tuple map constructor is:
< f, g > (10)

The axiom below gives the precondition for a tuple to be well-formed.

f : Z → Y, g : Z → X ⇒< f, g >: Z → (Y,X) (11)

2.2.1. Subobject classification
Of the topos axioms only the subobject classification axiom is not readily expressed in a rule
form. The use of this axiom is critical for expressing axioms in engineering and science ap-
plications. For example, in a model for a vehicle with types V ehicel, Engine, and a map
p : V ehicle → Engine which associates an engine to a vehicle, one wants the map p to have
the property that it doesn’t assign the same engine to two distinct vehicles. To prove properties
about the design model in this situation one needs to know that for monics there is an isomor-
phism from the image of the monic back to its domain. A replacement subobject classification
axiom is used here builds on a property found in set theory, but not in an arbitrary topos.

The subobject classification axioms are rule axioms with equational conclusions which use
hygienic map constructors in that they yield maps with well-defined types. The two constructors
used are a characteristic map constructor charf and a factorization constructor fach,f which is
used to factor a map h : T → X through a monic m : Y → X when charm(h) = true. This
factorization constructor is in addition to the subtype factorization constructor. The axioms,
which are called monic classification axioms, imply that each type X has a canonical subobject
structure, inclcharf determined by the characteristic maps charfX → Ω.

f : Y → X ⇒ charf : X → X, (12)
charf (f) = true (13)

f : Y → X, p : X → Ω,

p(f) = true, charf (inclp)⇒ p = charf (14)

f : Y → X, h : T → X ⇒ fach,f : T → Y (15)
m : Y → X, h : T → X,monic(m), charm(h) = true⇒

h = m(fach,m) (16)

incltrueX = idX (17)
c1 : X → Ω, c2 : X{inclc1} → Ω⇒ inclcharinclc1(inclc2)

= inclc1(inclc2) (18)
c1 : B → Ω, c2 : D → Ω⇒ incl(c1(proj1)∧c2(proj2) = incl(inclc1,inclc2) (19)

charf∗ = ∃!x.ε(x, idPow(X)) ∧ charf (x) (20)

A consequence of the axioms is that each type has a canonical family of subobjects, corre-
sponding to the subsets of a set in set theory. The monic classification axiom enables the image
of a monic m : Y → X to be characterized as a subtype of X . The axiom uses the constructor
charf : Y → X and a constructor m−1 : Im(m) → Y . When m is monic, m−1 is a map
m−1 : Im(m)→ Y a map which provides an isomorphism of the domain of m with its image.

2.2.2. Topos generated by an axiom set
By including the language construction axioms in a module, the deductive closure is a topos.
The deductive closure of an axiom set (modules)M is a topos T (M). To generate the topos we
use the topos signature and axioms A is augmented withM. The theory ofM is the collection
of formulae derivable from the application axioms together with the topos axioms using the full
intuitionistic “conditional” first order logic. The axioms for an axiom set generate a topos with
a natural numbers type when provably equal map terms are identified. The first order theory
generated by deductive closure of an axiom set is a topos with a form of canonical subobjects.
An interpretation of the signature of the axiom set coincides with the definition of a functor
from the theory generated by the axiom set.

3. Doctrine
In this section we look at the properies of the logic used to represent axiom sets as objects. The
logic of the doctrine reflects the operations used to develop the models (axiom sets). Application
development tools generally not only allow a author to develop a model, but operate on multiple
models and map between models. The doctrine formalism abstracts the capabilities found in
engineering model development tools. The logic of the doctrine, which has axiom sets as objects
and functors between axiom sets as maps, is a typed logic whose types form a cartesian closed
category. The types are meta types derived from the sorts of the axiom set logic. The task
of constructing a model (axiom set) to represent to represent a design specification such as
that for a vehicle consists of combining and assembling models into a unified model of the
vehicle and its operating environment. This unified model is then refined to be have the degree
of detail and precision required for the application. Of course combining models sometimes
requires model modification. Ideally combining models consists of unification, i.e., finding a
model which specializes the model being combined . For example, one might start with an
initial vehicle model with place holders (type variables)for components such as the engine and
drive train. Separately developed component models are integrated by binding the type terms
of the component models to the vehicle model component variables. The use of a common
base language with the topos language constructions reflects the common assumptions within
the application domain.

3.1. Objects of the doctrine
Axiom sets are the molecular unit for the doctrine approach. The application axiom sets include
a base signature and axioms for the term constructions of this base signature. Recall the finite
state machine description:

F =< Σ, S, F, s0, δ, s0 : One→ S, δ : S × Σ→ S, F v S > (21)

The tupleF is a actually a pattern description for a FSM. The symbols Σ, S, F are type variables
rather than type constants. This will be made precise in Section 3.2.1 where we also determine
the product type of which a concrete FMS is an instance.

The base language of term constructions use product, sum, exponential, and subtypes. The
commonality of axiom sets is that they use a signature with two sorts Map and Type. The base
ontology uses these two sorts with a collection of map and type symbols, a collection of function
symbols used as constructors for the map and type terms, and a collection of predicate symbols.
The type symbols include One the terminal type, Null the empty type, Ω the truth value type,
andN the natural numbers type. The map and type constructors are first order function symbols.
The signature also contains atomic predicates such as v and ∈ monic, function,',⊥ have

definedness restrictions. The formula X v Y is defined only when X is instantiated as a type.
The axioms for map constructions provide antecedent conditions for a term to be well-formed.

3.2. The Doctrine as a category of axiom sets and functors
The metalanguage we have been using to talk about axiom sets axiom sets such as G and F
mirrors the language used by a computational system for authoring, and reasoning about these
axiom sets. A computational system which has axiom systems as its objects, works in much the
same way as a word processing software which has text files as its objects. The computational
system allows users to create and edit axiom sets. When an axiom set is created the system
instantiates the axiom system with the base signature and axioms. Users may add to this axiom
set using the base signature and any additions. The metalanguage used by the computation sys-
tem, which need not be formalized here, has as its objects axiom sets,the theories they generate,
and transformations between these theories. This language and its computation and reasoning
rules are simply a precise form of the informal metalanguage used in this discussion.

3.2.1. Metatypes
As noted an axiom set is a tuple whose elements contain the symbols in the signature followed
by the axioms. The use of tuples indicates that the metalanguage has Cartesian products. The
types of the doctrine are meta types constructed from the sorts for Map, Type, and from a
meta type for Formula. The meta type constructions are used to distinguish the different
kinds of maps, types, and formulae that occur in an axiom set. The notation of a letter such
as X preceded by a : is used for a metatype. The instance relation also uses :. For example,
the expression f :: T assets that f is an instance of the meta type : T . The meta types are
constructed from type symbols, type variables, and the base type constructions. The meta type
constructions can be specified by a grammar. For example, the grammar production rules

: Type :=: TypeSymbol| : TypeV ar| : ProdType| : Subtype| : PowerType (22)
: ProdType := (: Type, : ProdType) (23)

specify a part of the grammar for meta types. Similarly the map meta type grammar specifica-
tion includes:

: Map :=: MapSymbol| : Comp| : Tuple| : Relation (24)

In addition to the grammar for maps and types, a grammar would be used to specify the formu-
lae.

: Rule := : Atom|Conjunction⇒ Atom (25)

However, for this discussion we distinguish subsets of map and type symbols using Boolean
connectives to define subtypes of Map and Type. These types are expressed with set builder
notation. For example, for a signature with map symbols p1, p2, p3, b1, b2 we use the predicate
f ∈ {b1, b2}. For example, production rules for the rule formulae include:

D = {a :: MapSymbol|a : One→ G} (26)

Similarly,

: Map{δ : S × Σ→ S} (27)

is a subtype of : Map. For the meta product types, i.e., products of meta types we use the
parenthesis notation where the entries are meta types. For example,

(: Type, : Rule) (28)

is the product of the meta types : Type and : Rule. We also use the computer science notational
convention

(S :: Type,R :: Rule) (29)

where : Type and : Rule are meta-types and S and R are names for the projection maps for the
product. The finite state machine axiom set tuple is an instance of the product type

(Σ :: Type, S :: Type, F :: Type{F v S}, s0 :: Map{s0 : One→ S},
δ :: Map{δ : S × Σ→ S}) (30)

We are identifying Σ, S, F as projection maps. The notation : Type{F v S} specifies a subtype
of : Type.

3.2.2. Coalescing models and functors
The use of a first order logic in which decidable term formation rules are allowed enables the
category concept of functor to coalesce with the first order concept of model. A first order model
for an axiom set A is a mapping I : A → C where C is a category. The mapping I sends terms
of the two sorts, map and type to maps and objects in the category. The constructor symbols
are mapped to operations in the category. The values of the constructors define operations on
the maps and types in the closure of the image of the axioms. These operations define a topos
structure for on this subcategory of the target category.

4. Conclusion
The topos formalism and its doctrine for axiom sets have been developed to represent applica-
tion models as axiom sets and to integrate reasoning with application model development in the
context of model development tools. Integration of modelling with formal reasoning has great
potential in everyday application design and analysis use. This quest to integrate application
modelling tools with logic is only the latest stage in the long history of axiomatic represen-
tation of scientific theories. One might ask why this task has proven so difficult, and why a
framework such as described above will be successful. The primary difficulty for the axiomatic
approach, in this author’s opinion, has been in finding a suitable language in which to represent
application models. The language constructions needed based on the author’s experience with
building and analysing application models is that a language with constructions such as is found
in set theory is required. Further if automated reasoning is to be practical one needs a formula
language restricted to something such as Horn rules.

4.1. Base language as ontology
In this doctrine formalism all of the axiom sets use the common base language for a topos. This
base language provides a common base ontology. As an ontology it is sufficient to represent
a variety of mathematics and a variety of applications which use classical physics. Many of
the engineering models use additional axiom sets for physical axioms such as optics, electro
magnetics, and gravity. However, it is possible that base ontologies with other properties may
be needed for applications such as those which have quantum mechanical properties.

4.2. Comparisons
Are there other candidates for a base ontology? Type theory is the only other formalism with
comparable expressiveness. Type theory has played a role in the foundations of software devel-
opment comparable to that suggested for topos theory in science and engineering. As is well
known the two formalisms are closely related, Lambek & Scott (1986). According to the defi-
nition of a type theory given there, the topos formalism can also be considered as a type theory.
In the author’s experience the use of both a domain and codomain type for terms works better
for the engineering and science applications. One other formalism, Description Logic, Baader
et al. (2003) is worth mentioning as it is a logic-based formalism and has received considerable
application use.

Description Logics use the paradigm that models are axiom sets. Description Logics with
extensions to rule logics have been employed with partial success to represent applications in
science and engineering as axiom sets,Magka et al. (2012). Description Logic representations of
associations use relations, Baader et al. (2003). However, equivalently these associations can be
described by maps whose codomain is a power type. By using a two sorted rule logic framework
one gets the benefit of the Description Language constructions, as well as, having an additional
expressiveness of variables and term constructions. Thus, avoiding problems inherent in using
Description Logic and its extensions for structural modelling, Graves & Horrocks (2008). As
noted in there DLs cannot be used to axiomatize a molecular structure such as cyclobutane
which always has a ring of carbon atoms. At least one tree shaped structure will be consistent
with the axioms. A logic programming formalism described in Magka et al. (2012) called
Description Graph Logic Programs (DGLPs) has been suggested as an approach to remedy
deficiencies of DGDL. DGLP does not contain an explicit representation of the graph structures
used in the descriptions and does not permit classification of graph theoretic structures. DGLP
places the burden of modelling on identifying the functions which represent the graph structure
and on producing the collection of graph orderings. Description logics even with the logic
programming extensions can be represented within the topos framework.

4.2.1. Doctrines
In application practice, as well as mathematics practice, one generally works with multiple
axiom sets (engineering models). For product design axioms are added and modified to achieve
an implementable design. The development process, including design and analysis, generally
makes use of multiple models of physical components to be incorporated into a design and
physics models which are used in models of the environment in which a product is designed to
operate. Application development tools generally not only allow a author to develop a model,
but operate on multiple models and map between models. Such an application development tool
can be described as implementing a doctrine, in the sense of Jon Beck. The informal concept
has been described as like a theory, except to be interpreted in the category of categories. The
objects are the axiom sets and the models are logical functors. The logic of the doctrine extends
the logic of the axiom sets to represent axiom sets as tuples which contain the signature and
axioms. Analysis including reasoning is done within the context of a specific theory. An axiom
set is developed for the application at hand. The application theory generated by the axiom set
may include broader scientific theories and may be refined or changed as the process plays out.

By formalizing the topos constructions as rule axioms within Conditional first order logic the
natural definition of model for the axiom set coincides with the definition of a functor from the
axiom set. The models of axiom sets are functorial models. The natural definition of model for
a module is a strict logical functor, as all of the topos map and type constructions are preserved.
All of these models use the same basic map and type constructions. The concept of doctrine,

provides a framework for the development of axiom sets. The doctrine of axiom sets has a
natural interpretation in the category of categories. For this doctrine, model of an axiom set is
morphism in the 2-category The doctrine in which a theory lies specifies the structure in which
models of that category can be internalized.

References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.). (2003).

The description logic handbook: Theory, implementation and applications. CUP. ((2nd
edition, 2007))

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on uml class diagrams.
Artificial Intelligence, 168(1), 70–118.

Bourbaki, N. (1948). L’Architecture des mathématiques. In F. Le Lionnais (Ed.), Les grands
courants de la pensée mathématique (pp. 40–41). Paris: Hermann.

Friedenthal, S., Moore, A., & Steiner, R. (2006). Omg systems modeling language (omg sysml)
tutorial. In Incose intl. symp.

Graves, H., & Bijan, Y. (2011). Using formal methods with sysml in aerospace design and
engineering. Annals of Mathematics and Artificial Intelligence, 63(1), 53–102.

Graves, H., & Horrocks, I. (2008). Application of owl 1.1 to systems engineering.

Hintikka, J. (2011). What is the axiomatic method? Synthese, 183(1), 69–85.

Lambek, J., & Scott, P. S. (1986). Introduction to higher order categorical logic. Cambridge:
Cambridge University Press.

Lawvere, F. W. (2005). An elementary theory of the category of sets (long version) with
commentary. Repr. Theory Appl. Categ, 11, 1–35.

Magka, D., Motik, B., & Horrocks, I. (2012). Modelling structured domains using description
graphs and logic programming. In The semantic web: Research and applications (pp. 330–
344). Springer.

Rodin, A. (2014). Axiomatic method and category theory. Synthese Library, 364.

Suppes, P. (2002). Representation and invariance of scientific structures. CSLI publications
Stanford.

