
IRTC: Integration of Knowledge Engineering with Real-Time Control

Tapio Taipale Douglas Foxvog

VTT Electronics, FIN-9057 1 Oulu, Finland

Abstract

Integration of knowledge engineering into a control
system introduces problems. They are caused by the fact
that timing information for a knowledge engineering
task is usually not well known. The indeterminate timing
causes problems for real-time scheduling. In this paper
a new approach is presented to solve the problem. The
approach includes, among other things, usage of
multiple versions for tasks, selection of versions
dynamically according to the available time, and
classifying of tasks into mandatory and optional tasks to
ensure proper operation for critical operations, The
approach is result of the ongoing EUREKA project
ca Lled IRTC.

1. Introduction

Nowadays, machines and devices are becoming
increasingly sophisticated. Machines are being equipped
with intelligent operations, and reliability is increased
by including diagnostics in the control systems. A
common way to implement these features is to use
knowledge processing. However, most control systems
operate under real-time requirements. Integrating
knowledge processing with real-time control leads to
conflicts. Rule-based expert systems traditionally
operate significantly slower than algorithmic routines
and generally take an indeterminate amount of time to
reach an answer, depending upon the amount and value
of data in the system. Contrarily, real-time systems
require guaranteed completion of routines within fixed,
generally short, time periods. These contradictions
make the marriage of the two technologies difficult.

Several methods have been introduced to solve the
problem of integrating real-time and AI, such as
anytime algorithms [11, approximate processing,
imprecise computing, and progressively deepening

reasoning. However, all those methods concentrate on
implementing a knowledge processing system with real-
time characteristics, instead of a real-time system with
knowledge processing features. When, for example,
diagnostic features are added to a control system, the
main goal is to add appropriate knowledge processing to
the real-time control system -- not to create a
knowledge engil-eering system.

In the EUREKA project entitled Intelligent Real-
Time Control (IRTC, no. EU71 I), we are working on an
integrated system that enables development and
execution of intelligent control systems with real-time
characteristics [2]. The main benefit of our approach is
that while the control system contains well-behaved
tasks with real-time requirements, it can also include
reasoning tasks and other tasks for which the execution
time is difficult to determine beforehand. The running
of an IRTC system is designed so that all the mandatory
tasks are always performed within their given deadlines
while the optional tasks are executed only if there is
enough time for them.

This paper concentrates on describing those aspects
of IRTC which relate to question of integrating AI and
real-time. First, the general architecture of an IRTC
system is outlined. Then, a more detailed description of
running of a IRTC application is given, putting
emphasis on AI and real-time aspects. Finally, a
conclusion is presented. For the other features of IRTC,
see [3].

2. Architecture of IRTC system

2.1. Application structure

An IRTC application consists of application states,
activities, and activity versions (Figure 1). The system
is always in one of the application states as determined
by the contents of the application state vector.

162
1068-3070/94 $03.00 0 1994 IEEE

Alarm
defective
module
(rule based)

t=50

Figure 1. An IRTC application

For each application state there is a group of
activities to be performed while in that state. An
activity can be, for example, "drill a hole" or "update
process display". For each activity there can be one or
more activity versions, each of which implements the
named activity, but taking different amounts of time
and producing different qualities of result. For each
activity version there is a corresponding task or function
which is executed to implement the activity [because
the activities can be modelled hierarchically, the lowest
level activities are called terminal activities (TA) and
corresponding versions terminal activity versions
(TAV)]. The philosophy behind multiple versions and
their management is explained later.

When an IRTC application is designed, the designer
has to provide timing and other parameters for activities
and activity versions as well as control information
which is used for determining the system's behaviour
depending upon the application state.

defective
component
(rule based)

t = 100

Activities

Versions

managing schedules (i.e. ordered lists of runnable
tasks): creating, modifying, and running them. It uses an
Application Structure KB which contains information
about activities and their versions (such as mutual
dependencies and timing information). The Context
Processor manages application states by receiving
messages from application tasks for updating the
application state vector and changing the application
state when necessary. The knowledge about the
conditions for application state changes is contained in
Control KB.

The whole IRTC system - application and global
controller - is run on the top of a commercial, POSIX
1004.3 compatible, real-time operating system (at the
moment Solaris 2.3) . For portability's sake, an interface,
the Virtual Machine (VM), has been designed for
accessing the system services of the real-time operating
system.

2.3. Operation of the system
2.2. General architecture

The main components of the IRTC system are
presented in Figure 2. The global controller, which
controls the application at the highest level, consists of
three main components: the Notifier, Scheduler and
Context Processor. The Notifier is responsible for
receiving and forwarding all the messages coming from
application tasks. The Scheduler is responsible for

When the system enters a new application state, the
Context Processor provides the Scheduler with a set of
activities from which it creates a runable schedule.
While creating the schedule, the Scheduler uses timing
and other parameters from the activities and their
versions. The schedule is adapted from a minimum
schedule in which the shortest duration versions of the
activities are used. While sufficient time is available,

163

Application K
IRTC Controller

Context Processor

(Messages)
I I

J

Scheduler
o Create Schedule
o Run Schedule
o Modify Schedule

a o Check Schedule
Y I

Figure 2. General architecture of the IRTC operating environment

longer duration versions are scheduled. The selection of
which versions of which activities are used in the
schedule depends on each activity's importance and
each activity version's utility.

The Scheduler acquires a feasible schedule which it
executes via its Runschedule service. During execution,
CheckSchedule monitors the timing of the execution. In
case of a timing deviation, the CheckSchedule calls the
Modifyschedule service which locally modifies the
current Schedule. Modification could be the
replacement of a longer duration version with a shorter
duration version or vice versa or the addition or removal
of an optional Terminal Activity. As the estimate for
execution time of knowledge-based tasks is very rough,
the available time is likely to change after the execution
of each such activity.

The change of the application state is issued by
Context Processor which receives messages from the
application for updating the application state vector.
Using the application state vector and control
information provided by the designer, the Context
Processor determines when to change the application
state and to what state.

2.4.
resolution

Activity versions & variable depth

Variable depth resolution (VDR) involves the use of
multiple methods for achieving a single purpose in an
integrated system. Rapidly completing versions give
acceptable answers in a short amount of time while
longer duration, more complex versions give more
complete, accurate, or useful results. VDR may be used
to allow several activity versions to be able to handle
the same objective, with one being selected depending
upon both its features and available system resources.
In our terminology each objective is handled by an
activity, which contains one or more versions.

Variable depth resolution is a valuable technique for
combining reasoning tasks with real-time systems to
achieve real-time intelligent control of mechatronic
systems. Multiple algorithmic tasks for the same job
are also quite possib!e [4]. An algorithmic solution
may be barely acceptable, but be guaranteed to run in a
fixed amount of time, while a rule-based operation may
do a lot more, but take an indeterminate amount of time
that is significantly longer than the algorithmic method.

For example, an activity to handle a loss of pressure
in a hydraulic fluid line might have an algorithmic
version which alerts the operator and halts the drilling

164

Actions to take Terminal Activity
Handle-loss-of-hydraulic-pressure

Version 0 Algorithmic Alert Operator and halt process
Version 1 Knowledge-Based Localize break, reset values to close of faulty line and

open parallel line, notify operator

Duration

1
50- 100

Figure 3 . Acceptance of Results Based upon
Duration of Knowledge-Based Version

Version 1

Version 0

In the simplest form VDR can be implemented so
that there is a default version which takes a short known
amount of time to complete, as well as a longer version
which takes an unknown amount of time (the designer
should provide an approximation of the duration). If
there is enough time the longer version is tried first. If it
has not finished before deadline minus the duration of
the shorter version, then the longer version is stopped
and the shorter version is executed in order to guarantee
the achievement of a result from the activity.

Another possible way to use multiple versions is to
execute successively more complex versions until either
the available time has been consumed or there is no
version available which could provide a better result.
The result of each version is stored until it is replaced
by a result from a more complex version or the activity
is declared complete. This could be implemented by
several distinct versions or by the same version being
called each time (which means that it is iterative task)
producing increasingly better results.

Variable depth resolution is related to variable depth
reasoning, in which a single task has multiple methods
for performing its objective and selects among them
based upon its own judgement of the relevant timing
issues. In real-time systems this would require the task

Version 1 results used
Fluid is rerouted
Drilling continues

to know about the existence of other tasks and their
timing requirements as well as its own timing. We are
using variable depth resolution instead, in order to keep
all scheduling under the controller.

2.5 Scheduling

The scheduler views the system as being composed
of coexisting activities, with an activity for each
objective of the system. Each activity has a list of
versions that could implement the activity, providing
different qualities of responses and taking different
amounts of time. Some versions could be rapid
algorithmic versions while others are complex rule
bases.

The controller maintains a list of activities that it
may be instructed to schedule. With each activity is
maintained the value of its importance and criticality as
well as a list of the headers for the versions that are
available for implementing that activity. Each version
header contains information on the version's duration,
its utility, its version type, and a means of accessing the
version itself as well as arguments for the version and a
couple of flags indicating how the version interacts with
other versions for the same activity. The scheduler uses
these parameters along with activity deadlines to select
which versions to run. If there is but a single version in
the list, no such processing occurs.

Criticality is tripartite: an activity may be
mandatory, optional, or background. A mandatory
activity must be executed before its deadline; this is not
strictly true for an optional activity, although every
attempt is made to do so; while background activities
are run only when nothing else is schedulable.
Importance is a number indicating the relative
importance of completion of an optional activity.
Utility is the relative benefit to the system of
completion of different versions for the same activity.
All of these values are assigned to the activities and
versions by the system developer. The scheduler uses
these parameters to dynamically determine the best way
to schedule versions for the best operation of a
continuous process.

165

I

If time permits, the scheduler may use progressive
reasoning [5] for appropriately designed activities and
schedule a more detailed version to replace the results
of another version of the same activity that has already
completed. Therefore, the controller maintains a list of
conditional results and actions to take as the outcome of
execution of its various activities. It puts entries into
the lists when a result message is received from a
version and implements the result or action by the
deadline. If a result is received from a later version of
the activity, the previous result is overridden.

3. Current situation

The system is currently under development. An
application (a control system for a currently existing
industrial machine) is currently being coded according
to IRTC concepts. The first prototype of the IRTC
control system became available for testing in February-
March of 1994.

The most interesting question, for which the testing
will give the answer, is the amount of the overhead
caused by the global controller. It is the major potential
drawback for the presented approach. Unfortunately, at
the time of writing the paper, the system was not yet
ready for measuring appropriately the timing
characteristics.

4. Conclusion

Most of the systems dealing with real-time and
knowledge engineering have concentrated on making a
knowledge engineering system with real-time
characteristics. In this paper a new approach was
presented for integrating knowledge engineering
activities within a real-time control system. Integration
has been made possible by having multiple versions of
one activity, and versions are selected dynamically
according to the available time.

5. References

[I] Dean, T. & Broddy, M.; An Analysis of Time-
Dependent Planning, Proceedings of the AAAI, 1988, pp. 49-
54.

[2] Seppiinen, P. & Foxvog, D.; IRTC - Project, Focusing
on Real-Time Features of Expert Systems, Finnish Artificial
Intelligence Conference, 9-1 1.6.1992, Otaniemi, Finland, pp.

[3] Pfeffer-Thurat, N; IRTC: Une Plate-Forme pour le
Developpement et 1'Execution d'Applications de Controle

90-95.

Intelligent en Temps Reel, Genie Logiciel et Systemes
Experts, September 1992, no. 28, pp. 70-73.

[4] Horvitz, E.; Reasoning Under Varying and Uncertain
Resource Constraints, Prodeedings of the AAAI, 1988, pp.

[5] Krijgsman, A. J. & Jager, R.; DICE: A Real-Time
Toolbox, Artificial Intelligence in Real-Time Control (1 992
IFAC/IFIP/IMACS Symposium), pp. 637-641.

11 1-1 16.

166

