

American Institute of Aeronautics and Astronautics

1

Engineering Complex Embedded Systems with
State Analysis and the Mission Data System

Michel D. Ingham,* Robert D. Rasmussen,† Matthew B. Bennett,‡ and Alex C. Moncada§
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA

{michel.d.ingham, robert.d.rasmussen, matthew.b.bennett, alex.c.moncada}@jpl.nasa.gov

It has become clear that spacecraft system complexity is reaching a threshold where
customary methods of control are no longer affordable or sufficiently reliable. At the heart
of this problem are the conventional approaches to systems and software engineering based
on subsystem-level functional decomposition, which fail to scale in the tangled web of
interactions typically encountered in complex spacecraft designs. Furthermore, there is a
fundamental gap between the requirements on software specified by systems engineers and
the implementation of these requirements by software engineers. Software engineers must
perform the translation of requirements into software code, hoping to accurately capture the
systems engineer’s understanding of the system behavior, which is not always explicitly
specified. This gap opens up the possibility for misinterpretation of the systems engineer’s
intent, potentially leading to software errors. This problem is addressed by a systems
engineering methodology called State Analysis, which provides a process for capturing
system and software requirements in the form of explicit models. This paper describes how
requirements for complex aerospace systems can be developed using State Analysis and how
these requirements inform the design of the system software, using representative spacecraft
examples.

I. Introduction
S the challenges of space missions have grown over time, we have seen a steady trend toward greater
automation, with a growing portion assumed by the spacecraft. This trend is accelerating rapidly, spurred by

mounting complexity in mission objectives and the systems required to achieve them. In fact, the advent of truly
self-directed space robots is not just an imminent possibility, but an economic necessity, if we are to continue our
progress into space.

What is clear now, however, is that system complexity is reaching a threshold where customary methods of
control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches
to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the
tangled web of interactions typically encountered in complex spacecraft designs. A straightforward extrapolation of
past methods has neither the conceptual reach nor the analytical depth to address the challenges associated with
future space exploration objectives.

Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers
and the implementation of these requirements by software engineers. Software engineers must perform the
translation of requirements into software code, hoping to accurately capture the systems engineer’s understanding of
the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation
of the systems engineer’s intent, potentially leading to software errors.

In this paper, we describe a novel systems engineering methodology, called State Analysis, which addresses
these challenges by asserting the following basic principles:

- Control subsumes all aspects of system operation. It can be understood and exercised intelligently only
through models of the system under control. Therefore, a clear distinction must be made between the control
system and the system under control (see Figure 1).

* Senior Software Engineer, Flight Software Development and Technology Group, M/S 301-225, AIAA Member
† Principal Engineer, Information Technologies & Software Systems Division, M/S 301-225.
‡ Avionics Systems Engineer, Flight Systems Engineering Group, M/S 156-142.
§ Staff Engineer, Flight Systems Engineering Group, M/S 301-225.

A

American Institute of Aeronautics and Astronautics

2

- Models of the system under control must be explicitly identified and used in a way that assures consensus
among systems engineers.

- Understanding state is fundamental to successful modeling. Everything we need to know and everything we
want to do can be expressed in terms of the state of the system under control.

- As complexity grows, the line between specifying behavior and designing behavior is blurring. To the extent
the software design reflects the systems engineer’s understanding, the software will perform as the systems
engineers desire. Thus, the manner in which models inform software design and operation should be direct,
requiring minimal translation.

State Analysis improves on the current
state-of-the-practice by producing requirements
on system and software design in the form of
explicit models of system behavior, and by
defining a state-based architecture for the
control system. It provides a common language
for systems and software engineers to
communicate, and thus bridges the traditional
gap between software requirements and
software implementation.

In this paper, we discuss the state-based
control architecture that provides the
framework for State Analysis (Section II), we
emphasize the central notion of state, which lies
at the core of the architecture (Section III), we
present the process of capturing requirements
on the system under control in the form of
models (Section IV), and we illustrate how these models are used in the design of a control system (Section V). We
then describe a State Database tool used for documenting the models and requirements (Section VI). Finally, we
describe the Mission Data System (MDS), a modular multi-mission software framework that leverages the State
Analysis methodology (Section VII). Clearly, a complete discussion of these topics is beyond the scope of a paper
such as this; however, the overview we provide here highlights the essential features of State Analysis and MDS.

II. State-based Control Architecture
State Analysis provides a uniform, methodical, and rigorous approach for:

- discovering, characterizing, representing, and documenting the states of a system;
- modeling the behavior of states and relationships among them, including information about hardware

interfaces and operation;
- capturing the mission objectives in detailed scenarios motivated by operator intent;
- keeping track of system constraints and operating rules; and
- describing the methods by which objectives will be achieved.

For each of these design aspects, there is a simple but strict structure within which it is defined: the state-based
control architecture (also known as the “control diamond,” shown in Figure 2). The architecture has the following
key features:1

- State is explicit: The full knowledge of the state of the system under control is represented in a collection of
state variables. State knowledge is updated in the form of continuous-time State Functions, to accurately reflect
the fact that the system’s true state is defined at any point in time. We discuss the representation of state in more
detail in Section III.

- State estimation is separate from state control: Estimation and control are coupled only through state variables.
State estimation is a process of interpreting measurements and monitored commands to generate state
knowledge; this process may combine multiple sources of evidence into a determination of state, supplied to a
state variable as an estimate. Control, in contrast, attempts to achieve objectives by issuing commands that
should drive estimated state toward desired state. Keeping these two tasks separate promotes objective
assessment of system state, ensures consistent use of state across the system, simplifies the design, promotes
modularity, and facilitates implementation in software.

- Hardware adapters and data collections provide the sole interfaces between the system under control and the
control system: They form the boundary of our state architecture. Hardware adapters provide all the

Control System

System Under Control

System Under Control

Control System

System Under Control

System Under Control

Figure 1. The control system uses a model of the system
under control.

American Institute of Aeronautics and Astronautics

3

measurement and command abstractions used for control and estimation of physical states, and are responsible
for translating and managing raw hardware input and output. Measurements can be used both as evidence for
estimating the state of the hardware in the system under control (e.g., accelerometer, switch position, and
temperature sensor measurements), and for holding science observations (e.g., camera images and spectrometer
readings). The control system can directly inspect the data collections to determine the state of the system data.
Commands are directives that change the state of the system under control; these can be hardware commands
(e.g., switch open/close and device operating mode commands) or data commands that are used for managing
the data collections (e.g., data compression and data transport commands).

- Models are ubiquitous throughout the architecture: Models are used both for execution (estimating and
controlling state) and higher-level planning (e.g., resource management). Whether overt and explicit, or hidden
quietly in the minds of the engineers, models have always existed, since understanding and modeling are
essentially the same thing. The key is that State Analysis requires that the models be documented explicitly, in
whatever form is most convenient for the given application. In Section IV, we describe our process for
capturing these models.

- The architecture emphasizes goal-directed closed-loop operation: Instead of specifying desired behavior in
terms of low-level open-loop commands, State Analysis uses goals, which are constraints on state variables
over a time interval. Goals are easier to specify than the actions needed to achieve them, and result in more
compact specifications of desired behavior. Furthermore, goal-directed operation goes hand-in-hand with
closed-loop control, because goals can be thought of as set points for onboard controllers, which are then given
the latitude to decide how best to achieve the goals. In our architecture, goals are also used to specify the
desired quality of state knowledge to be achieved by estimators, and to express operating constraints (such as
resource and safety margins) and monitored conditions (such as failure modes and external events). In
Section V, we discuss goals and their use in high-level system coordination.

- The architecture provides a straightforward mapping into software: The control diamond elements can be
mapped directly into components in a modular software architecture, such as MDS,1 which is described in
Section VII of this paper.

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Figure 2. The state-based control architecture.

American Institute of Aeronautics and Astronautics

4

In summary, the State Analysis methodology is based on a control architecture that has the notion of state at its
core. In the following section, we describe our representation of state, and how we capture the evolution of state
knowledge over time.

III. State Knowledge Representation
As discussed in the previous section, State Analysis is founded upon a state-based control architecture, where

state is the momentary condition of an evolving system and models describe how state evolves. The state of a
system and our knowledge of that state are not the same thing. The real state may be arbitrarily complex, but our
knowledge of it is generally captured in simpler abstractions that we find useful and sufficient to characterize the
system state for our purposes. We call these abstractions “state variables.” The known state of a system is the value
of its state variables at the time of interest.

Together, state and models supply what is needed to operate a system, predict future state, control toward a
desired state, and assess performance. In this section, we focus on clarifying what we mean by “state,” and
describing how we represent state in state variables. More detail on our representation of state knowledge has been
previously published.2,3

A. Defining “State”
A control system has cognizance over the system under control. This means that the control system is aware of

the state of the system under control, and it has a model of how the system under control behaves. The premise of
State Analysis is that everything we care about (to meet mission objectives) can be completely characterized as
knowledge of state and its behavior – that no other information is required to control the system. Consequently,
State Analysis adopts a broader definition of state than traditional closed-loop control theory, for example: in
addition to position, attitude, temperature, pressure, power, and the like, we would also include as state any other
aspects of the system that we care about for the purposes of control, and that might need to be estimated, such as
device operating modes, device health, resource levels (propellant; volatile and non-volatile memory), etc. We
would also include environmental states such as the motions of celestial bodies and solar flux.

Though we often think of state as describing the features of a system that change over time, we must include in
our definition of state certain quantities that are actually static in nature. For example, the dry mass of a spacecraft
may be essentially constant; however, our knowledge of it may very well change over the course of a mission. If one
is actively engaged over the lifetime of a system in refining knowledge of some attribute of a system, then that
attribute is best described with a state variable – not because the actual value is changing, but rather because what
we do to estimate its value or respond to changes in its estimated value is fundamentally no different than for any
other state variable. Similarly, our definition of state encompasses attributes that we would normally define as
“parameters” in the vernacular of space systems, such as instrument scale factors and biases, structural alignments,
and sensor noise levels. Their variation over time may be slow; in fact, they may even be treated as constant under
normal circumstances. But changes happen to them, nonetheless – even if it requires a failure to cause the changes –
and a control system must be cognizant of such changes to the system.

Another type of state variable of great importance is nevertheless likely to come as a mild surprise to those who
have not yet encountered it: the state of a data collection. Lower level data management and transport functions are
generally considered to be part of the system under control. These include the cataloguing functions that capture the
collections of data gathered from instruments and other devices. Therefore, in its cognizance of the system, the
control system must also be aware of the state of these data collections. That is, there must be state variables that
represent the state of these collections. On further consideration, this should come as no surprise at all. The concept
of state is concerned with change. The difference between a camera before taking a picture and that same camera
afterward is primarily the presence of the newly recorded image. This is not only a change we can describe, but it is
a vital change – one that motivates the entire existence of the camera. And it is not just any image we care about, but
the right image. Therefore, the change of state must be described in a manner sufficient to discriminate between the
right image and the wrong image. The state variable we need, then, is one that represents our knowledge of what
data has been collected, including the conditions under which it was collected, the subject of the data, or any other
information pertinent to decisions about its treatment.

We note, however, that the internal state of the control system is not represented by state variables. This is in
keeping with a basic principle of State Analysis that distinguishes clearly between the control system and the system
under control (recall Section I). A control system may indeed have internal state; in fact, it usually does. These
might include control modes, records of past operation, and so on. But this state is not maintained in state variables.
A state variable is the representation of a state; it is knowledge of that state, but it is not the state itself. Therefore, if

American Institute of Aeronautics and Astronautics

5

control system state were maintained in state variables, there would be both control system states and control system
state variables to represent them, which is redundant. This would lead to problematic self-reference, with the control
system issuing goals on its own internal state variables.

B. Representing State
Now that we have defined what “state” means, we consider how to represent it. An important part of the State

Analysis process is to select and document an appropriate representation for each state variable in the system. As
previously indicated, state variables can have discrete values (e.g., a camera’s operational mode can be “off,”
“initializing,” “idle,” or “taking-picture”) or continuous values (e.g., a camera’s temperature might be represented as
a real value in degrees Celsius). Whether continuous- or discrete-valued (or a composite of such values), all state
variables represent state as a piecewise function of continuous time, rather than as a history of time-stamped
samples. This representation is true to the underlying physics, where state is defined at every instant in time. Our
architectural decision to update state in the form of continuous-time State Functions (see Figure 2) has important
implications on the form of the software requirements produced through State Analysis. It is therefore worthwhile to
introduce the notion of state timelines as the conceptual repositories for state knowledge, which also map into state
value containers in the MDS software architecture.

State Analysis assumes that state evolution is described on state timelines (Figure 3), which are a representation
of a system's past and future history. This representation is complete, to the extent that it captures everything the
control system has chosen to remember about the state, subject to storage limitations. State knowledge is “forgotten”
by explicitly replacing it with knowledge of lesser quality (e.g., a summarized representation, or simply the value
“unknown”), rather than deleting it. As a result, querying a state timeline at any time will always return a stored
value, even if that value may be merely “unknown.” State timelines provide the fundamental coordinating
mechanism for any control system developed using State Analysis, since they describe both knowledge and intent.
This information, together with models of state behavior, provides everything the control system needs to predict
and plan, and it is available in an internally consistent form, via state variables. This internal consistency is due to
architectural rules disallowing competing local versions of information about the same state.

State timelines also provide a control system with an efficient mechanism for transporting data between the
ground system and the spacecraft. For instance, telemetry can be accomplished by relaying state histories to the
ground, and communication schedules can be relayed as state histories to the spacecraft. Timelines are a relatively
compact representation of state history, because states evolve only in particular and generally predictable ways. That
is, they can be modeled. Therefore, timelines can be transported much more compactly than conventional time-
sampled data.

Because of our adoption of a continuous-time representation of state in the form of State Functions on a timeline,
a state and all of its derivatives can and should be modeled using a single state variable, to ensure consistency of
representation (thus avoiding the possibility of returning inconsistent values for a state and its derivative).

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Don’t
Know

Don’t
CareOFF

ON

OFF

ON

OFF

ON

OFF

ON

Past Future

time

continuous-valued variable

discrete-valued variable

Now

History compared to plans Predictions informed by plans

Figure 3. Timelines are used to capture state knowledge (past estimates and future predictions) and intent
(past and future constraints on state).

American Institute of Aeronautics and Astronautics

6

C. Representing Uncertainty
In a real system, we never really know physical states

with complete accuracy or certainty – only a simulator
“knows” state values precisely. The best we can do is to
estimate the value of the state as it evolves over time. These
estimates constitute state knowledge; it is what we know,
and, equally important, how well we know it. That is, it
makes no sense to represent the estimated value of a state
without also representing the level of certainty of the
estimate. Although State Analysis asserts that uncertainty
must be explicitly represented along with the state value, it
imposes no restriction on how uncertainty should be
represented. It can be represented in many ways, e.g.,
enumerated confidence tags, variance in a Gaussian
estimate, probability mass distribution over discrete states,
etc. State Analysis even allows for polymorphic
representations of state and uncertainty (see Figure 4).

There are multiple benefits to explicitly representing
uncertainty. First, it leads to a more robust software design,
in which estimators can be honest about the evidence,
increasing the uncertainty in their estimates for conflicting
evidence, noisy evidence, missing evidence, and ‘old’
evidence (see Figure 5). Furthermore, it enables controllers
to exercise caution, and modify their actions during periods
of high uncertainty. Finally, it allows human operators to be
better informed about the quality of knowledge of the state.

We recall that data collections are included as part of the
system under control. We note that the state of data

collections is known with complete certainty, since the state of system data can be directly inspected. Thus, data
states are represented without uncertainty.

Now that we have defined our notion of state and described our representation of it, we next turn to the issue of
modeling the behavior of the system under control.

IV. Modeling the System Under Control
State Analysis provides a methodology for developing a model of the system under control. This model

represents everything we need to know for controlling and estimating the state of the system under control. We note
that traditional systems engineering approaches capture most of this information in multiple disparate artifacts,
allowing for potential inconsistencies. By making the model explicit, the State Analysis approach consolidates all
this information rigorously in a consistent unambiguous form.

Our model of the system under control is composed of:
- State Models describing how each state in the system under control evolves over time and under the influence of

other states;
- Measurement Models describing how each measurement is affected by various states in the system under

control; and
- Command Models describing how states are affected by each command (possibly under the influence of other

states in the system under control).
This model describes the behavior of all elements in the

system under control, including most of the hardware plus
any software assigned to the system under control (e.g., in
hardware adapters or data management functions), as well
as the relevant behavior of any external systems (e.g.,
environmental effects). It is important to note that these
models are expressed in terms of true state, and that
consideration of uncertainty in the state estimates is only
folded into the estimation and control algorithms that are

A wheel’s direction is:
unknown (uniform distribution)

turning right (uniform distribution)

at a hard stop, so calibrated

calibrated (normal distribution)

−90°

−90°

−90°

−90° +90°

+90°

+90°

+90°

A wheel’s direction is:
unknown (uniform distribution)

turning right (uniform distribution)

at a hard stop, so calibrated

calibrated (normal distribution)

−90°

−90°

−90°

−90° +90°

+90°

+90°

+90°

Figure 4. Uncertainty representation can be
polymorphic, e.g., given a uniformly uncertain
rover wheel direction, we can calibrate our
knowledge of direction by turning the wheel
(narrowing the range of the uniform
distribution) until it hits its stop (at which
point our knowledge of state has very little
uncertainty). As a result of rover operations,
the level of uncertainty in the wheel direction
estimate increases over time (represented as a
normal distribution with gradually increasing
variance).

time

envelope
depicts
3σ error

update

time

envelope
depicts
3σ error

update

Figure 5. The level of uncertainty associated
with a state estimate generally grows over
time, and can decrease with the receipt of
additional evidence by the estimator.

American Institute of Aeronautics and Astronautics

7

informed by the model. This will be discussed further in Section V.

A. The Modeling Process
State Analysis provides an iterative process for discovering state variables of the system under control and for

incrementally constructing the model. The steps in this process are as follows:
1. Identify needs – define the high-level objectives for controlling the system.
2. Identify state variables that capture what needs to be controlled to meet the objectives, and define their

representation.
3. Define state models for the identified state variables – these may uncover additional state variables that

affect the identified state variables.
4. Identify measurements needed to estimate the state variables, and define their representation.
5. Define measurement models for the identified measurements – these may uncover additional state

variables.
6. Identify commands needed to control the state variables, and define their representation.
7. Define command models for the identified commands – these may uncover additional state variables.
8. Repeat steps 2-7 on all newly discovered state variables, until every state variable and effect we care about

is accounted for.
9. Return to step 1, this time to identify supporting objectives suggested by affecting states (a process called

‘goal elaboration,’ described later), and proceed with additional iterations of the process until the scope of
the mission has been covered.

This modeling process can be used as part of a broader iterative incremental software development process, in which
cycles of the modeling process can be interwoven with concurrent cycles of software implementation.

It should be noted that State Analysis provides a methodology for documenting significant states and effects as
well as the rationale for dismissing others. If a state or effect is purposely omitted because it is insignificant, or if it
is greatly simplified through abstraction, the reasons should be documented.

B. Example
We now present a simple example to illustrate this iterative process. Consider the problem of powering up a

rover’s navigation camera (step 1). One of the key state variables associated with this activity is the Camera Power
State (step 2). We select an appropriate state representation for the Camera Power State: real-number values in
Watts for mean and standard deviation. For the purposes of this example, we choose a simple state model for the
behavior of this state variable, described by the following textual representation (step 3):

- If Camera Power Switch Position is Open (or Tripped-Open) or if Power Bus Voltage is less than
threshold, Camera Power State = 0 Watt;

- Otherwise,
- if Camera Health = Healthy, Camera Power State = 10 Watts;
- if Camera Health = Short-Circuit, Camera Power State > 10 Watts.

(Note that this model is highly simplified for the purposes of illustrating the modeling process; a real model for
Camera Power State would undoubtedly be more complex.)

This state model makes reference to three other
states of the system under control: ‘Camera Power
Switch Position’, ‘Power Bus Voltage’ and ‘Camera
Health’. In this example, we assume there are no
direct measurements or commands associated with
Camera Power State (steps 4-7). This completes our
first iteration of the modeling process. Figure 6
shows a graphical representation of the states and
effects we have documented thus far. This
representation, which we call a State Effects
Diagram, provides a convenient view of the state
variables in the system under control, and the
physical effects between these state variables.

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera
Power Switch

Position

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera
Power Switch

Position

Figure 6. State Effects Diagram after one iteration of
the modeling process. State variables of the system
under control are represented as ovals, and state
effects are denoted by arrows.

American Institute of Aeronautics and Astronautics

8

Let us consider a second iteration, focusing on the Camera Power Switch Position state variable (step 2). The
representation for this state variable is discrete, where the switch can be Open, Closed, or Tripped-Open. We choose
to specify the state model for this state variable in the form of a StateChart4 (step 3), which is a convenient
representation for discrete state models that are fairly commonly used by systems engineers (Figure 7). We note that
the behavior in this state model is affected by two state variables, ‘Camera Power State’ (the “load overcurrent”
condition on the transition from Closed to Tripped-Open corresponds to Camera Power State > 10 Watts) and
‘Camera Power Switch Health’ (the “Health = OK” conditions on all of the transitions, which imply that nominal
transitions between switch position states require that the switch be healthy, and not stuck). These effects are
depicted in the updated State Effects Diagram in Figure 8. The effects of the commands shown in the StateChart will
be discussed when we define the command model in step 7.

Note that we could have decided to combine Camera Power Switch Position and Camera Power Switch Health
into a single state variable, ‘Camera Power Switch Position & Health’. A reasonable state model for this combined
state variable is depicted in Figure 9. Deciding whether to combine state variables or keep them separate boils down
to a tradeoff between the complexity of a combined model and the number of separate models that would be
necessary to capture the same behavior. As a guideline, we would generally consider combining state variables if:

- intricate couplings make for a highly-connected State Effects Diagram;
- they affect many of the same measurements;
- they are affected by many of the same commands; or
- they affect the results of many of the same commands.

Closed Open

Tripped
Open

Open-cmd & Health = OK

Close-cmd & Health = OK

Open-cmd &
Health = OK

Load overcurrent &
Health = OK

Low-probability random event &
Health = OK

Camera Power Switch Position:

Power
conducting

Power not
conducting

Power not
conducting

OK Failed
Switch Fails

Camera Power Switch Health:

Closed Open

Tripped
Open

Open-cmd & Health = OK

Close-cmd & Health = OK

Open-cmd &
Health = OK

Load overcurrent &
Health = OK

Low-probability random event &
Health = OK

Camera Power Switch Position:

Power
conducting

Power not
conducting

Power not
conducting

Closed Open

Tripped
Open

Open-cmd & Health = OK

Close-cmd & Health = OK

Open-cmd &
Health = OK

Load overcurrent &
Health = OK

Low-probability random event &
Health = OK

Camera Power Switch Position:

Power
conducting

Power not
conducting

Power not
conducting

OK Failed
Switch Fails

Camera Power Switch Health:

OK Failed
Switch Fails

Camera Power Switch Health:

Figure 7. StateCharts for the Camera Power Switch Position and
Camera Power Switch Health state variables. The three discrete
state values for Camera Power Switch Position each have an
associated power conduction behavior. This model allows for a
low-probability random event that can change the switch position
state arbitrarily, presuming the switch health is not Failed
(i.e., stuck). This type of a single-event upset behavior, although
rare, should be captured as a possible response of the switch.

American Institute of Aeronautics and Astronautics

9

Conversely, we generally use separate state variables when we wish to transport, estimate, or control them
separately (typically for efficiency, when they tend not to change together).

We assume that the power switch has an associated sensor that provides a measurement of the switch position,
either “open,” “tripped-open,” or “closed” (step 4). We define the measurement model (measurement expressed as a
function of its affecting states), as follows (step 5):

- if Camera Power Switch Position Sensor Health is Healthy, Measurement = Camera Power Switch Position;
- if Camera Power Switch Position Sensor Health is Stuck-Reading-Open, Measurement = Open (independent

of the Camera Power Switch Position);
- if Camera Power Switch Position Sensor Health is Stuck-Reading-Closed, Measurement = Closed

(independent of the Camera Power Switch Position);
- if Camera Power Switch Position Sensor Health is Stuck-Reading-Tripped-Open, Measurement = Tripped-

Open (independent of the Camera Power Switch Position).
This measurement model specifies the dependence of the measurement not only on the Camera Power Switch

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Position

Camera
Power Switch

Health

Camera
Power Switch

Command

Camera
Power State

Camera
Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Position

Camera
Power Switch

Health

Camera
Power Switch

Command

Figure 8. State Effects Diagram after two iterations of the modeling process.

Closed Open

Tripped
Open

Open-cmd

Close-cmd

Open-cmdLoad overcurrent

Low-probability
random event

Camera Power Switch Position & Health:

Failed
Open

Failed
Closed

Open &
Switch Fails

Closed &
Switch Fails

Closed Open

Tripped
Open

Open-cmd

Close-cmd

Open-cmdLoad overcurrent

Low-probability
random event

Camera Power Switch Position & Health:

Failed
Open

Failed
Closed

Open &
Switch Fails

Closed &
Switch Fails

Figure 9. State model for the combined Camera Power Switch Position & Health
state variable (StateChart representation).

American Institute of Aeronautics and Astronautics

10

Position state variable, but also on another as-yet-unspecified state variable: the ‘Camera Power Switch Position
Sensor Health’. This simple model assumes three different possible failure modes for the sensor, corresponding to
the sensor readings being “stuck” at one of the three possible outputs. In a real model, we might also want to allow
for the possibility that the sensor could exhibit other failure modes, such as intermittent random readings.
Measurements are depicted on the State Effects Diagram as triangles, as shown in Figure 8, representing the state of
the data collections associated with the measurements. The diagram shows incoming effect arrows from all state
variables that appear in the measurement model.

The camera power switch is, by definition, an actuator. We therefore specify a command that will allow us to
affect a change in the camera switch position state. We define this command to include a parameter, to be set by the
appropriate controller, which indicates the desired operation: “Open-cmd” or “Close-cmd” (step 6). Associated with
this command we define a command model, which specifies how the Camera Power Switch Position state variable
changes in response to the command (step 7). Command models are used to describe instantaneous changes of state;
we ascribe cascading effects and delayed behavior to the state model. Tables, such as the one in Figure 10, are a
convenient way to represent command models for discrete commands like the camera power switch command.
However, we note that this command model was previously fully specified by the StateChart in Figure 7; such
model representations can be used to concisely capture state, measurement and command models in a single form.
Commands are depicted on the State Effects Diagram (see Figure 8) as inverted triangles, with an outgoing arrow
pointing to the commanded state variable (Camera Power Switch Position, in this case), and incoming arrows from
the state variables that have an impact on the effects of the command (Camera Power Switch Position and Camera
Power Switch Health, in this case). The double-headed arrow between Camera Power Switch Position and Camera
Power Switch Command indicates that the switch position is affected by the command, and that its value prior to
issuing the command affects the results of the command. Just as for measurements, a command in the State Effects
Diagram represents the state of the data collection associated with the command.

We have just stepped through two iterations of the modeling process. Further iterations on all newly discovered
state variables would eventually produce a State Effects Diagram like the one depicted in Figure 11. This diagram
reflects the combined Camera Power Switch Position & Health state variable, as discussed above. There are state
variables in this figure that require further modeling, so this is not the end of the process. As we have illustrated, our
modeling approach can lead us a long way from the states we started from, but this is a good thing: it allows us to
quickly ascertain the scope of the problem.

In addition to illustrating the iterative modeling process we adopt in State Analysis, this simple example also
shows how State Analysis promotes early consideration of component health states and fault modes. This is in
contrast with traditional systems engineering practice, where consideration of off-nominal behavior (“failure modes
and effects analysis”) is commonly postponed until later in the spacecraft design process, and can lead to ad-hoc
fault protection implementation. In State Analysis, fault behaviors are included in the state models and are treated
just like any nominal state; as a result, fault detection, diagnosis, and recovery become integral aspects of the design

No changeIf Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Open

Camera Power
Switch Position =
Closed

If Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Closed

No changeCamera Power
Switch Position =
Open

No changeIf Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Open

Camera Power
Switch Position =
Tripped-Open

Close-cmdOpen-cmdCurrent State \ Cmd

No changeIf Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Open

Camera Power
Switch Position =
Closed

If Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Closed

No changeCamera Power
Switch Position =
Open

No changeIf Camera Power Switch
Health = OK, Camera
Power Switch Position
transitions to Open

Camera Power
Switch Position =
Tripped-Open

Close-cmdOpen-cmdCurrent State \ Cmd

Camera Power Switch Position =
F (Camera Power Switch Position,

Camera Power Switch Health,
Camera Power Switch Command)

Figure 10. Command Model associated with the Camera Power Switch
Command, in tabular form.

American Institute of Aeronautics and Astronautics

11

of the system architecture.
Furthermore, our example shows how State Analysis is flexible with respect to model representation. We

provide systems engineers with broad latitude to capture the state, measurement and command models in a form that
is most convenient for their specific application.

In summary, State Analysis provides a modeling process that produces requirements on system and software
design in the form of explicit models of the system under control. These models capture the systems engineer’s
understanding of the state-level behavior and interactions in the system. In the next section, we will discuss how
State Analysis uses information from the models in the design of the mission software.

V. Using the Model to Design the Control System
The state, measurement and command models defined as part of the State Analysis process (described in the

previous section) are used throughout the control system. In this section, we outline how state, measurement and
command models are used to inform the software design. In particular, we discuss the design of the Mission
Planning and Execution functions, and the Estimation and Control algorithms (recall Figure 2).

A. Mission Planning and Execution
As mentioned in Section II, one of the key features of State Analysis is that it emphasizes goal-directed closed-

loop operation. The control architecture in Figure 2 includes a Mission Planning and Execution5 function whose role
is to produce and execute plans for accomplishing high-level mission objectives. Unlike the traditional “open-loop”
approach to space mission planning and operation, where spacecraft operator intent is translated into sequences of
low-level commands, we specify plans as temporally-constrained networks of goals (goal networks). Goal-directed
operation represents a logical evolution of the spacecraft control paradigm, allowing operators to generate closed-
loop sequences that implicitly account for system interactions. It enables (but does not impose) flexible autonomous
operations, by freeing the ground controllers from having to worry about the exact state of the spacecraft,
empowering the spacecraft to accommodate surprises without the need for ground intervention and improving
reliability, despite uncertainty in our knowledge of the environment. Fault responses have always been goal-directed
to some extent, out of necessity, and recent space missions, including the Cassini and Mars Exploration Rover
spacecraft, have demonstrated a fair amount of goal-directed behavior for nominal operations. However, this
powerful control paradigm has not yet been consistently applied across a mission in a way that allows it to be fully
exploited by an onboard or ground-based reasoning system.

In order to enable goal-directed operation, systems engineers must define the types of goals that can be issued,
the groups of goals that achieve higher-level goals (traditionally referred to as “blocks” or “macros”), and the
system-specific logic needed to correctly plan and execute goals. In this subsection, we first define our notion of

Camera
Image

Measurement
Camera

Power State

Camera
Op Mode

Camera
Health

Camera
Parameters

Available
Memory
Storage

Light Level

Camera
Pointing wrt
Site Frame

Terrain
Features

Camera
Power Switch

Position & Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Command

Camera
Command

Camera
Image

Measurement
Camera

Power State

Camera
Op Mode

Camera
Health

Camera
Parameters

Available
Memory
Storage

Light Level

Camera
Pointing wrt
Site Frame

Terrain
Features

Camera
Power Switch

Position & Health

Power Bus
Voltage

Camera Power
Switch Position Sensor

Health
Camera

Power Switch
Position Sensor
Measurement

Camera
Power Switch

Command

Camera
Command

Figure 11. State Effects Diagram for simple camera example.

American Institute of Aeronautics and Astronautics

12

goal; we then show how the model of the system under control is used to elaborate goals into the fundamental
building blocks of goal networks; and finally, we briefly address how these building blocks can be assembled and
scheduled into goal networks for onboard execution.

1. Goals:
In State Analysis, a goal is defined as a constraint on the value history of a state variable over a time interval.

The start and end of each time interval is called a “time point,” a potentially variable moment in time. As part of the
State Analysis process, a systems engineer specifies a dictionary of goal types, each with parametric state constraints
and unspecified temporal constraints (which we represent diagrammatically, as shown in Figure 12). A goal is
specified by instantiating a goal type in the goal dictionary. Spacecraft operators construct activity plans in the form
of goal networks, by interconnecting goals. Interconnections are made either by sharing time points among goals
(e.g., one goal ends at the same time point as another goal starts), or by adding additional temporal constraints
among time points (e.g., one goal starts an hour after another starts).

A goal is expressed as an assertion whose success or failure can be evaluated with respect to its state variable’s
value history (state timeline). We note that commands are not the same thing as goals. For example, if our objective
were to bring a camera to an acceptable operating temperature, “At 2:00 pm, issue the close-switch command to the
camera heater power switch” would not be a valid goal; what if we were to issue the close-switch command,
immediately followed by an open-switch command? What if the switch failed to close? What if it tripped open?
Clearly, we would not have achieved our underlying objective of heating the camera, even though we did issue the
close-switch command as specified.

Similarly, actions in support of a higher level objective are not the same as a goal to achieve that objective. For
example, “The Camera Heater is powered on from 2:00 pm to 3:00 pm” is a valid goal, per our definition; however,
what if we power the heater, but an unanticipated cold Martian wind results in a net decrease of the camera
temperature? Again, we would not have achieved our high-level objective of heating up the camera, even though the
supporting action was properly executed.

Finally, settings of controller and estimator modes are also not the same as goals. For example, “The camera
temperature controller shall be in Thermostatic Mode from 2:00 pm to 3:00 pm” is not a valid goal. The definition of
a goal requires there to be a state variable to put the goal on. The state variable in this case would have to be the
controller mode, but state variables are not defined for anything but states of the system under control. This avoids
self-reference, preserving the principle of separation between control system and system under control discussed in

Camera Temperature:
is between X and Y

degrees C

Camera Temperature:
is between 10 and 20

degrees C

[1 hr, 2 hrs]

Parametric constraint replaced
by operational constraint

A temporal constraint bounds
the duration of the goal

State Variable

Parametric constraint on the
value of the state variable

Starting Timepoint

Ending Timepoint

Goal
Type:

Instantiated
Goal:

Camera Temperature:
is between X and Y

degrees C

Camera Temperature:
is between 10 and 20

degrees C

[1 hr, 2 hrs]

Parametric constraint replaced
by operational constraint

A temporal constraint bounds
the duration of the goal

State Variable

Parametric constraint on the
value of the state variable

Starting Timepoint

Ending Timepoint

Goal
Type:

Instantiated
Goal:

Figure 12. The anatomy of a goal type and an instantiated goal. Every goal has a starting time point
and an ending time point. A goal can be instantiated with a flexible temporal constraint on its duration,
indicated by an arrow from its starting to its ending time point, labeled with a [min, max] duration
window.

American Institute of Aeronautics and Astronautics

13

Section I. Furthermore, by imposing a controller mode, we have dictated the actions of the control system. Perhaps
there is a control mode that would both achieve the objective and lead to lower power consumption in the heater. By
explicitly setting the control mode, we are not giving the control system the freedom to adjust its actions to the
circumstances at hand.

Clearly we would prefer to coordinate control in a way that focuses on the state we really care about controlling,
and that allows the control system the flexibility to decide how best to affect that state. This is exactly what our
definition of goal implies. Goals specify what to achieve within the system under control, not how to achieve it
within the control system; they express conditions that should persist over some time interval, and provide a
statement of operational intent.

In our example, what we really care about is the Camera Temperature state. An appropriate goal for
accomplishing the objective would be “The Camera Temperature is between 10 and 20 degrees Celsius from 2:00
pm to 3:00 pm” (instantiated from the goal type in Figure 12). Given this goal, the software controller associated
with the Camera Temperature state variable has the flexibility to change modes or issue commands as necessary to
satisfy our intent.

We note that the intent of this goal is to maintain the camera temperature within a range; however, this goal will
fail unless the temperature is already in range at 2:00 pm. This is because the temperature cannot be changed
instantaneously at 2:00 pm to meet the goal’s condition after 2:00 pm (per the physics specified in the Camera
Temperature state model). Consequently, a “maintenance” goal of this sort is generally immediately preceded by a
“transition” goal that achieves the appropriate precondition. In this case, an appropriate transition goal would be
“Camera Temperature is transitioning to be between 10 and 20 degrees Celsius no later than 2:00 pm.”

Since our representation of state knowledge is continuous in time, goals can express constraints on the time-
varying behavior of the state value history, e.g., “Camera temperature is between 10 and 20 degrees Celsius from
2:00 pm to 3:00 pm, and its rate of change does not exceed 1 degree Celsius per minute during this time period.” In
another example, goals can express constraints on time-averaged behavior, e.g., “Camera Temperature is between 10
and 20 degrees Celsius between 2:00 pm and 8:00 pm, over at least 80% of each hour.” Further examples can be
found in goals that embody the sort of system safety constraints typically associated with fault monitors in
traditional software, where persistence tests are a feature. For goals of this sort, success of the goal cannot be
determined by looking at the instantaneous value of the state variable, but rather, only by following the progress of
the state over time. This justifies our earlier definition of a goal as a constraint on the value history of a state variable
(and not just on its value at any specific point in time).

The examples of goals we have presented thus far have focused on control goals, i.e., goals that express
constraints on desired nominal values of state variables. As we mentioned in Section II, goals are also used to
specify desired quality of state knowledge, to be achieved by estimators. We refer to these types of goals as
knowledge goals, e.g., “Camera temperature standard deviation is less than 0.5 degree Celsius from 1:00 pm until
5:00 pm,” or “Camera power switch position is known with 95% certainty or better from 1:00 pm until 5:00 pm.”

We have introduced control and knowledge goals as distinct, for illustrative purposes. However, it does not
always make sense, for certain representations of state knowledge, to speak of constraints on the state value
separately from constraints on the quality of state knowledge. Thus, a single goal can specify constraints on both
state value and quality of knowledge, e.g., “Camera temperature mean value, plus or minus three sigma, is in the
range 10-20 degrees Celsius [10 ≤ mean – 3σ ≤ mean + 3σ ≤ 20], from 2:00 pm to 3:00 pm.”

Finally, another type of state we described in Section III is the state of a data collection. We can therefore
specify goals on these data states. Goals of this type are called data goals, e.g., “Camera Temperature measurement
data collection state contains at least one measurement less than 10 seconds old, from 1:00 pm until 5:00 pm.”

2. Goal Elaborations:
As we discussed in Section IV, our model of the system under control captures the physical cause-and-effect

relationships between state variables. Because of these interactions between state variables, it is clear that there is
more to controlling than simply asserting a goal on a state variable of interest, and expecting it to be achieved in
stand-alone fashion, without considering its implications on other related states in the system. Furthermore, many
goals simply cannot be achieved without also asserting supporting goals on other state variables that impact our state
variables of interest.

Part of the State Analysis methodology is the specification of fundamental “blocks” of goals, which can be
assembled into plans and which account for the causality between state variables in the system under control. We
call these fundamental blocks goal elaborations. A goal’s elaboration specifies supporting goals on related state
variables that may need to be satisfied in order to achieve the original goal, or alternatively, may simply make the
original goal more likely to succeed.

American Institute of Aeronautics and Astronautics

14

Goal elaborations are defined based on engineering judgment, our model of the system under control, and the
following five rules:

1. A goal on a state variable may elaborate into concurrent control goals on directly affecting state variables
(concurrent goals share the same start and end time points).

2. A control goal on a state variable elaborates to a concurrent knowledge goal on the same state variable (or
they may be specified jointly in a single control and knowledge goal).

3. A knowledge goal on a state variable may elaborate to concurrent knowledge goals on its affecting and
affected state variables.

4. Any goal may elaborate into preceding goals (typically on the same state variable). For example, a
“maintenance”-type goal on a state variable may elaborate to a “transition”-type goal on the same state
variable, which has an ending time point coincident with the starting time point of the “maintenance”-type
goal.

5. A goal’s elaboration can include uncertain temporal constraints to reserve time in the schedule for actions
required by the goal.

Goal elaborations are defined locally for each goal by considering only direct effects (that is, effects of states that
are only a single step away in the State Effects Diagram). It is also important to note that goal elaborations are
different from traditional macro expansions, in that the elaborated goal is not replaced by the goals in its
elaboration, but rather, these goals are added to the plan along with the elaborated goal. That way, the original intent
of the expansion is not lost. The elaborated goal can be monitored for success along with all its supporting goals,
allowing the system to determine how it is doing with respect to the original intent.

Let us consider the simple camera power example to illustrate how to apply the above rules in the elaboration of
goals. We assume for our purposes that the scope of the simple model is as shown in Figure 8 (as opposed to the
more complete model in Figure 11). Consider the following goal on the Camera Power State: “Camera Power State
is 10 ± 1 Watts.” Applying the elaboration rules, our models of the system under control and some reasonable
engineering judgment, this goal can be elaborated as shown in Figure 13. Per Rule #1, our control goal on Camera
Power State elaborates into concurrent supporting control goals on the affecting state variables (recall the State
Effects Diagram in Figure 8): Camera Power Switch Position, Camera Health, and Power Bus Voltage. Per Rule #2,
it also elaborates into a knowledge goal that asserts that the uncertainty in the Camera Power State must be limited
to a standard deviation of 0.2 Watts or less. Finally, per Rule #4, our goal that constrains Camera Power to be
maintained at 10 ± 1 Watts must be immediately preceded by a goal that results in Camera Power reaching the 10
Watt level. Since our goal is a control goal, Rule #3 does not apply.

Camera Power:
is 10 +/- 1 W

Camera Power Switch Position:
is Closed

Camera Health:
is Healthy

Rule #1

Camera Power:
is transitioning to 10 +/- 1 W

Rule #4

Power Bus Voltage:
is greater than threshold

Camera Power:
is known with σ <= 0.2 W

Rule #2

Legend:

timepoint

goal

common
timepoint

Camera Power:
is 10 +/- 1 W

Camera Power Switch Position:
is Closed

Camera Health:
is Healthy

Rule #1

Camera Power:
is transitioning to 10 +/- 1 W

Rule #4

Power Bus Voltage:
is greater than threshold

Camera Power:
is known with σ <= 0.2 W

Rule #2

Legend:

timepoint

goal

common
timepoint

Figure 13. The elaboration for the “Camera Power State is 10 ± 1 Watts” goal.

American Institute of Aeronautics and Astronautics

15

Note that an elaboration is nothing more than a goal network appended to the original goal at its time points.
Goal elaboration is an iterative process, so supporting goals that appear in an elaboration are, in turn, elaborated.
Thus, elaboration works by iteratively adding goals into an increasingly larger goal network. The elaborations chain
together to encompass the full set of relevant state variable interactions. As a second example, consider the
elaboration of one of the supporting goals from the first elaboration: “Camera Power is known with σ ≤ 0.2 Watt”
(see Figure 14). In this case, the application of Rule #1 does not result in the elaboration of the knowledge goal into
any control goals (implying that maintaining the quality of knowledge of the Camera Power State requires no
explicit control over its affecting states). Rule #3 results in the elaboration of our knowledge goal into supporting
goals constraining the knowledge of the affecting states. We see that different representations of uncertainty are
accommodated: for Camera Power State and Power Bus Voltage we use standard deviations (in Watts and Volts,
respectively), for Camera Power Switch Position we distinguish simply between “known” and “unknown,” and for
Camera Health we compute a percentage certainty level. The specific constraints in the supporting goals may be
either directly inferred from the state models or determined based on engineering judgment and analysis of the state
models. We also see that our “maintenance of knowledge” goal on Camera Power State elaborates into a preceding
transitional goal on the same state variable (Rule #4).

Similar elaborations are specified for the remaining supporting goals, for each of their own supporting goals, and
so on. We can manage the complexity and scale of the iterative elaboration process by making judicious engineering
decisions to identify “terminal” goals that require no further elaboration. The issue of how to deal with loops in the
elaborations is not discussed here, but clearly must be addressed, by either engineering the elaborations to explicitly
avoid loops, or adopting an iterative elaboration algorithm that converges to the final elaborated goal network. We
can also leverage automated algorithms to assemble goal networks from the elaborations and schedule them, as we
will discuss in the following subsection.

We support alternative ways of accomplishing a goal by allowing the definition of multiple alternative goal
elaborations, called tactics. Thus, should any of the supporting goals in an elaboration fail, it becomes possible to re-
elaborate with an alternate tactic to accomplish the same objective. Context-specific elaboration can be enabled by
conditioning alternative elaboration tactics on different state constraints.

Currently, systems engineers produce goal elaborations by hand, using the aforementioned elaboration rules. We
note that the existence of an explicit model opens up the possibility of automatic generation of goal elaborations
from the state models. Further work is needed in the areas of model representation and model-based reasoning
before such a capability can be implemented. We see recent progress in the compilation of model-based programs6
as a potential solution to this problem; this is an area for future work.

In the MDS software architecture, described in Section VII, elaborations are performed within a coding
framework. In that context, essentially arbitrary implementation is possible, but for ease of design a compact

Camera Power:
is known with σ <= 0.2 W

Camera Power Switch Position:
is known

Camera Health:
is known with 95% certainty

Rule #3

Camera Power:
is transitioning to being
known with σ <= 0.2 W

Power Bus Voltage:
is known with σ <= 0.1 V

Camera Power:
is known with σ <= 0.2 W

Camera Power Switch Position:
is known

Camera Health:
is known with 95% certainty

Rule #3

Camera Power:
is transitioning to being
known with σ <= 0.2 W

Power Bus Voltage:
is known with σ <= 0.1 V

Figure 14. The elaboration for the “Camera Power State is known with σ ≤ 0.2 Watt” goal.

American Institute of Aeronautics and Astronautics

16

language called GEL (Goal Elaboration Language)
has been provided. Graphical tools for elaboration
design are also planned and have been prototyped.

Before we move on to address the topic of goal
networks, we introduce a mechanism that enables
“reactive” coordination of activity, as opposed to the
more “deliberative” (pre-planned) coordination we
have introduced via elaboration of goals into
supporting goals with explicit constraints. Reactive
execution-time coordination is needed during
activities like rover driving and steering, or attitude
control thrusting, for which it would not be
appropriate to specify explicit goals on individual
rover wheels or thrusters at plan-time. For these
types of activities, we expect one controller (or
estimator) to coordinate the control of one or more
hardware components within very short reaction
times.

In State Analysis, the mechanism we use for this
is called delegation, because it involves one state
variable delegating the authority over its controller
to another state variable’s controller or estimator.
Not surprisingly, we specify delegation relationships
in terms of our model of the system under control.
Delegation from state variable B to state variable A
is an option when the value of state variable B
affects the value of state variable A (see Figure 15). To enable the exchange of reactive goals between the controller
(or estimator) of A and the controller of B at run-time, we must plan ahead: during elaboration, the delegator (B)
authorizes the delegate (A) to send reactive goals to B subject to an allocation requested in the elaboration of a goal
on A. This allows our planning system to allocate and account for the level of delegator “resource” (state variable B)
that might be needed to achieve the goal on A. During execution, the controller (or estimator) of A can then send
goals “on-the-fly” to the controller of B, as necessary to achieve its goal, as long as these reactive goals honor the
resource allocations established at elaboration time. Figure 16 shows how delegation is enabled via goal elaboration,
for a rover driving and steering example. We defer discussion of how the delegation mechanism is built into the
design of estimators and controllers to a later section of this paper.

In the following subsection, we discuss how the goal elaborations are used in the construction and scheduling of
goal networks.

3. Goal Network Scheduling:
Once the necessary set of goal elaborations has been defined, they can be encoded into the ground and flight

software, enabling ground operators to simply specify desired behavior in terms of high-level goals on the state
variables of interest, and allowing the Mission Planning and Execution system to automatically:

- elaborate these goals into the set of appropriate supporting goals;
- add these elaborated goals into the current goal network, which includes all background goals (capturing

flight rules and constraints) and previously-scheduled activities; and
- schedule the augmented goal network to satisfy any specified temporal constraints and to eliminate any

conflicts that arise, and verify the consistency of the full goal network that results.
This is an iterative search process that may require backtracking, and the use of heuristics for efficiency, to guide

the search. The details of the Mission Planning and Execution system have been previously published.5 Here we
focus on providing a high-level overview of its main scheduling-related functions and describing how they leverage
the model of the system under control.

State Var
A

State Var

B
affects

State Effects Model

Goal Elaboration Diagram

State Variable A
(ordinary goal)

State Variable B
(delegate to A)

State Var
A

State Var
A

State Var

B
State Var

B
affects

State Effects Model

Goal Elaboration Diagram

State Variable A
(ordinary goal)

State Variable B
(delegate to A)

Figure 15. Reactive execution-time coordination via
delegation is enabled during goal elaboration.

American Institute of Aeronautics and Astronautics

17

We recall from Section III that state timelines are used for
representing intent. More specifically, for each state variable in the
system under control, the intent is captured as a sequence of executable
goals (“x-goals”) on its timeline. These x-goals are created through a
process called scheduling, which involves four steps:

1. adding appropriate temporal constraints to the goal network to
ensure that all potentially concurrent goals for each state
variable are consistent (non-conflicting and achievable);

2. merging all the goals into x-goals on the state timelines;
3. propagating state effects from affecting states to affected states,

and projecting each state variable over time according to state
constraints and initial state values; and

4. checking the consistency of the resulting x-goal timelines,
including checking to make sure that the projected states are
compatible with the scheduled x-goals.

This is an automated process performed by a scheduling engine,
which must be informed by the models of the system under control
provided by systems engineers. The means by which the models inform
the scheduling is through a handful of logic functions specified as part

of the State Analysis process. For instance, we must specify the logic associated with merging multiple goals on a
given state variable (step #2). This corresponds to an intersection operation performed on the goals’ state
constraints, as shown in Figure 17.

State Analysis also specifies the logic used in step #3 to propagate state effects across the system (Figure 18) and
project state into the future (Figure 19). This logic is derived directly from the state models described in Section IV.
This projection logic provides a mechanism for generalized resource management for the system under control.

Rover Position & Heading
wrt Landing Site:

is maintaining position (X, Y)

Wheel 1 Driving Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Rover Position & Heading
wrt Landing Site:

is moving to position (X, Y)

Wheel 6 Driving Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Rover Position & Heading
wrt Landing Site:

is known with σx, σy <= 0.01 m

Wheel 1 Steering Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Wheel 6 Steering Motor:
is delegated to Rover Position

& Heading wrt Landing Site

…

…

Rover Position & Heading
wrt Landing Site:

is maintaining position (X, Y)

Wheel 1 Driving Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Rover Position & Heading
wrt Landing Site:

is moving to position (X, Y)

Wheel 6 Driving Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Rover Position & Heading
wrt Landing Site:

is known with σx, σy <= 0.01 m

Wheel 1 Steering Motor:
is delegated to Rover Position

& Heading wrt Landing Site

Wheel 6 Steering Motor:
is delegated to Rover Position

& Heading wrt Landing Site

…

…

Figure 16. Goal elaboration that establishes delegation of wheel motors for driving and steering
to Rover Position & Heading controller.

merge

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
between 15 and 25

degrees C

Camera Temperature:
between 15 and 20

degrees C

merge

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
between 15 and 25

degrees C

Camera Temperature:
between 15 and 20

degrees C

Figure 17. Goal merging function.

American Institute of Aeronautics and Astronautics

18

Finally, we must also specify the logic associated with checking the consistency of the resulting x-goal timelines
(step #4). This involves checking each x-goal for achievability, checking that each consecutive pair of x-goals is
compatible (i.e., that the transition from one x-goal to the next is achievable, as in Figure 20), and finally, checking
that the computed state projections are consistent with the x-goal constraints. These logic functions take the form of
Boolean queries that are posed to the appropriate estimator (in the case of a knowledge x-goal) or controller (in the
case of a control x-goal), which uses the specified logic and the state information available at schedule time to

Project Constraint

Battery State of Charge:
unconstrained

Camera Power Use:
maintain at 10 W

Solar Panel Output Power:
maintain at 150 W

Battery State of Charge:
maintain at 100 W⋅hr

Battery State of Charge:
increasing to 240 W⋅hr

100

240

B
at

te
ry

 S
oC

, W
⋅h

r

Time

[1 hr, 1 hr]

[1 hr, 1 hr]

0 1 hr 2 hr

Legend:

[min, max] temporal
constraint

timepoint

goal

x-goal

common
timepoint

Project Constraint

Battery State of Charge:
unconstrained

Camera Power Use:
maintain at 10 W

Solar Panel Output Power:
maintain at 150 W

Battery State of Charge:
maintain at 100 W⋅hr

Battery State of Charge:
increasing to 240 W⋅hr

100

240

B
at

te
ry

 S
oC

, W
⋅h

r

Time

[1 hr, 1 hr]

[1 hr, 1 hr]

0 1 hr 2 hr

Legend:

[min, max] temporal
constraint

timepoint

goal

x-goal

common
timepoint

Figure 18. Projecting effects across the state variables of the system under
control. Lower plot depicts the resulting constraint on Battery State of Charge vs.
time.

Camera
Power Use

Battery State
of Charge

10 W0 W

Decreasing to
240 W⋅hr

Increasing to
250 W⋅hr

0 We

e

∞

∞
Maintain
100 W⋅hr

Solar Panel
Output
Power

0 W150 W0 We ∞

Solar
Panel

Output
Power

Camera
Power

Use

Battery
State of
Charge

Etc.

[1 hr, 1 hr] [1 hr, 1 hr] [1 hr, 1 hr]

Camera
Power Use

Battery State
of Charge

10 W0 W

Decreasing to
240 W⋅hr

Increasing to
250 W⋅hr

0 We

e

∞

∞
Maintain
100 W⋅hr

Solar Panel
Output
Power

0 W150 W0 We ∞

Solar
Panel

Output
Power

Camera
Power

Use

Battery
State of
Charge

Etc.

[1 hr, 1 hr] [1 hr, 1 hr] [1 hr, 1 hr]

Figure 19. Projecting state effects across state over time. This simple example assumes
that the Camera is the sole power user. The time point labeled “e” corresponds to an
“epoch” reference time, and the time point labeled “∞” corresponds to infinity, denoting
the end time point of the network. Though the temporal constraints on these x-goals are
fixed 1-hour intervals, flexible temporal constraints are also supported.

American Institute of Aeronautics and Astronautics

19

answer the query. Aside from checking the projections, we do not check affecting states, because elaboration has
already imposed any conditions on them that we would need to check. Likewise, if there are timing considerations,
they have already been imposed via temporal constraints in the elaboration.

Scheduling is finished when all the goals in all the timelines have been scheduled, all the effects of all the x-
goals have been combined and merged with the affected timeline, and all the x-goals are consistent and their
transitions are consistent. Figure 21 shows the results of scheduling a goal network for a simple example with two
state variables, ‘Camera Temperature’ and ‘Heater Switch Position and Health’. Prior to scheduling, the timelines
for both state variables are unconstrained (top, Figure 21). In this example, we wish to schedule three goals:
“Camera Temperature is between 10 and 20 degrees Celsius for 1 hour, starting sometime in the next 3 hours,”
“Heater Switch Position and Health is Healthy and Off, for up to 2 hours,” and “Camera Temperature is always
between 15 and 25 degrees Celsius.” The first of these goals elaborates into a preceding transitional goal on Camera
Temperature (which itself has an elaboration) and a concurrent goal on Heater Switch Position and Health, while the
other two goals are defined to be terminal goals, with no elaborations. As shown in the figure, the scheduling
process produces x-goals that result from merging compatible constraints on Camera Temperature, and the insertion
of a precedence constraint (labeled with a “0” time interval) between two incompatible constraints on Heater Switch
Position and Health.

We have described elaboration and scheduling as sequential steps, which accurately reflects the current
implementation of the MDS Mission Planning and Execution system. However, by interleaving elaboration and
scheduling we could improve the performance by potentially reducing the amount of backtracking search we need to
do to find a consistent schedule. The design and implementation of an algorithm for interleaved elaboration and
scheduling is an area of current work.

4. Goal Network Execution:
Once the goal network has been fully elaborated and scheduled, it is ready to be executed.5 The time points

between x-goals on each state timeline can be thought of as events; these events can be shared across multiple state
timelines. Executing a goal network is paced by “firing the time points” on its x-goal timelines, at times consistent
with the temporal constraints imposed on these time points. Before a time point can fire, all the goals that have this
time point as their starting time point must be “ready” to start executing; that is, the post-conditions and pre-
conditions associated with the transition from the current x-goal to the next x-goal on the timeline must be satisfied.
As each time point fires, it becomes “grounded” in time (assuming it had flexibility in its temporal constraints) and
the next x-goal is dispatched to the appropriate state variable’s controller (in the case of a control goal) and estimator
(in the case of a knowledge goal). The estimators and controllers achieve these goals by updating state knowledge
and issuing appropriate commands to the system under control, respectively; this is the topic of the next subsection
of the paper on “Estimation and Control.”

As execution proceeds, the status of each currently-executing goal in the goal network is monitored to see
whether its state constraint is being satisfied. A goal “fails” if its state constraint is determined to be violated, based
on the state history stored in the state variable. Note that we monitor the status of each individual goal in the goal
network, rather than just monitoring the status of the x-goals that result from merging goals onto the state timelines.
As a result, we can specifically determine which of the original specifications of intent are not being met, and
respond appropriately; for instance, we would probably choose to respond differently to the failure of a goal on a
state variable that was associated with some routine science observation than to the failure of a goal on the same
state variable that asserted a mission health and safety constraint. A number of different responses to goal failure are
allowed, including:

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
transition to between
10 and 20 degrees C

True

Is Transition
Achievable?Consecutive x-goals on timeline

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
between 5 and 25

degrees C
False

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
transition to between
10 and 20 degrees C

True

Is Transition
Achievable?Consecutive x-goals on timeline

Camera Temperature:
between 10 and 20

degrees C

Camera Temperature:
between 5 and 25

degrees C
False

Figure 20. Transition achievability function.

American Institute of Aeronautics and Astronautics

20

- simply removing the goal (and all of its supporting goals) and continuing execution of the remaining goals in
the network; failed goals may be placed into a holding bin for later re-elaboration and rescheduling;

- propagating the failure up the network by failing the goal that the failed goal is supporting (assuming the
failed goal was instantiated as part of an elaboration);

- triggering the re-elaboration and rescheduling of the onboard activities; or
- safing the spacecraft, in the case of failure of a goal that jeopardizes mission success or safety.

Before scheduling:

Camera Temperature:
between 10 and 20

degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera Temperature:
transition to between 10 and

20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Elaboration 1

Elaboration 2

Camera
Temp.

Heater
Switch &

Health

e

[0, 3 hrs]

Heater Switch &
Health:

healthy and off
e

[0, 2 hrs]

e ∞

[0, 30 mins]

e

e

∞

∞

Camera Temperature:
between 15 and 25 degrees C

Unconstrained

Unconstrained

[1 hr, 1 hr]

Camera Temperature:
between 10 and 20

degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera Temperature:
transition to between 10 and

20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Elaboration 1

Elaboration 2

Camera
Temp.

Heater
Switch &

Health

e

[0, 3 hrs]

Heater Switch &
Health:

healthy and off
e

[0, 2 hrs]

e ∞

[0, 30 mins]

e

e

∞

∞

Camera Temperature:
between 15 and 25 degrees C

Unconstrained

Unconstrained

[1 hr, 1 hr]

After scheduling:

Camera Temperature:
between 10 and 20

degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera Temperature:
transition to between 10 and

20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera
Temp.

Heater
Switch &

Health

e

[0, 3 hrs]

Heater Switch &
Health:

healthy and off
e

[0, 2 hrs]

e ∞

[0, 30 mins]

0

Camera Temperature:
betw. 15 & 20

degrees C

Camera Temperature:
betw. 15 & 25 degrees C

and transitioning to
betw.15 & 20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Heater Switch & Health:
healthy and switching
between on and off

Camera Temp:
betw.15 & 25

degrees C
e

e

∞

∞

Cam. Temp:
betw. 15 & 25

degrees C

Unconst.
Heater Switch &

Health:
healthy and off

Camera Temperature:
between 15 and 25 degrees C

[0, 2 hrs]
[0, 30 mins]

[1 hr, 1 hr]

Elaboration 1

Elaboration 2

[1 hr, 1 hr]

Camera Temperature:
between 10 and 20

degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera Temperature:
transition to between 10 and

20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Camera
Temp.

Heater
Switch &

Health

e

[0, 3 hrs]

Heater Switch &
Health:

healthy and off
e

[0, 2 hrs]

e ∞

[0, 30 mins]

0

Camera Temperature:
betw. 15 & 20

degrees C

Camera Temperature:
betw. 15 & 25 degrees C

and transitioning to
betw.15 & 20 degrees C

Heater Switch & Health:
healthy and switching
between on and off

Heater Switch & Health:
healthy and switching
between on and off

Camera Temp:
betw.15 & 25

degrees C
e

e

∞

∞

Cam. Temp:
betw. 15 & 25

degrees C

Unconst.
Heater Switch &

Health:
healthy and off

Camera Temperature:
between 15 and 25 degrees C

[0, 2 hrs]
[0, 30 mins]

[1 hr, 1 hr]

Elaboration 1

Elaboration 2

[1 hr, 1 hr]

Figure 21. Scheduling example (top, before scheduling; bottom, after scheduling).

American Institute of Aeronautics and Astronautics

21

In addition, the failure of a goal is normally reported via telemetry. The desired response to goal failure must be
specified as part of the State Analysis.

Just as in goal elaboration and scheduling, the execution of a goal network is informed by the models of the
system under control provided by systems engineers. We must specify the logic functions that dictate execution as
part of the State Analysis process. The two primary execution-related functions that need to be specified are the
logic associated with checking that the conditions on transition between x-goals are satisfied (post-conditions and
pre-conditions), and the logic associated with checking that a currently-executing goal is being satisfied. The latter
function can be a straightforward check for violation of the goal’s state constraint, but is more generally defined as a
check of whether the goal is still satisfiable, given our model of the system under control and our controller’s or
estimator’s capabilities. As an example of the former, consider the pre-condition associated with an x-goal “Camera
Temperature is between 10 and 20 degrees Celsius.” An obvious choice would be to condition the start of this x-goal
on the satisfaction of its state constraint. However, it is important to note that there is not necessarily a simple
correspondence between an x-goal’s pre-condition and its state constraint; we have the freedom to express the pre-
condition in the form of any appropriate constraint on the state variable. In this case, we might choose to specify a
slightly tighter range for our pre-condition, say, between 12 and 18 degrees Celsius. This might help improve our
chances of satisfying the goals that were merged to produce the x-goal.

For “transition”-type goals, such as “Camera Temperature is transitioning to between 10 and 20 degrees
Celsius,” we frequently specify no pre-condition on the start of the goal, meaning that our goal should be achievable
no matter what value our state variable has when the goal starts executing. An appropriate post-condition on this
type of goal would be that the transition objective has been met, e.g., Camera Temperature is between 10 and 20
degrees Celsius. Of course, if our schedule allows insufficient time for the transition to occur, the goal will fail.
Therefore, elaboration must assure the necessary transition time by adding temporal constraints, and any
assumptions involved in computing this time (such as worst-case initial conditions) may need to be added as pre-
conditions.

Off-nominal execution can result in goal failure (when a goal’s state constraint is not satisfied) or temporal
constraint violation (when a time point’s time window expires before all outgoing goals are ready to start executing).
The violation of a temporal constraint on a time point results in the automatic firing of that time point (even though
not all of the post- and pre-conditions on the corresponding x-goal transitions were satisfied), which will likely
result in the failure of one of the ensuing goals via state constraint violation. Thus, all execution failures manifest
themselves as goal failures.

Firing a time point (i.e., satisfaction of
its post- and pre-conditions) is an event.
Therefore, as we have described thus far,
goal network execution is event-driven
(within temporal constraints), and all of
the functions performed by estimators and
controllers are paced by these events. We
expect these functions to establish
appropriate conditions for subsequent
goal, so execution proceeds in a controlled
manner from one goal to the next.
However, event-driven execution need not

be confined to controllable state variables. For instance, consider the simple goal network in Figure 22, which
represents the assertion “External Temperature ≥ 10 degrees Celsius sometime in the next 12 hours; once this
temperature is reached, the Heater Power State shall begin following a duty cycle of 30% On, 70% Off.” Assuming
we specify the pre-condition on the External Temperature goal as “External Temperature ≥ 10 degrees Celsius” and
no pre-condition on Heater Power State, the execution of this simple network will result in the system waiting for
the External Temperature goal’s pre-condition to be satisfied before firing the second time point. When the second
time point fires, the heater begins operating at the duty cycle prescribed in the goal. If the expected level of External
Temperature is not reached by the 12-hour deadline, the time point will fire, and the goal will fail, allowing us to
take an appropriate response.

In summary, the products of State Analysis are used to inform the Mission Planning and Execution functions of
the control system. This results in sequences that are verifiably executable, self-monitoring, robust during nominal
operations, and reactive during off-nominal circumstances.

External Temperature:
>= 10 degrees C

[0, 12 hrs]

Heater Power State:
is following a duty cycle of

30% On, 70% Off

External Temperature:
>= 10 degrees C

[0, 12 hrs]

Heater Power State:
is following a duty cycle of

30% On, 70% Off

Figure 22. Goal network that illustrates event-driven
execution using a goal on an uncontrollable state variable.

American Institute of Aeronautics and Astronautics

22

B. Estimation and Control
In the description of the State Analysis control architecture (Section II), we emphasized the importance of

making a clear distinction between estimation and control, and we introduced estimators and controllers as the
achievers of desired state. In this section we will briefly discuss how the model of the system under control is used
to inform the algorithm development of the estimators and controllers, and how our paradigm of goal-driven
execution impacts their design.

The use of models for estimation and control is not new – estimation and control theory is founded on the notion
of using models of the system’s state dynamics, measurements, and commands to compute estimates of current state
and decide on appropriate control actions. This principle is commonly applied to the estimation and control of
spacecraft position and attitude, structural dynamics, and temperature states, to name a few examples. In State
Analysis, we simply demand that state models for all state variables of interest be documented, extending this
paradigm across the whole system under control.

As discussed previously, state estimation is a process of interpreting information to achieve a requested quality
of state knowledge, expressed in the form of a knowledge goal (see Figure 23). This process involves not only
collecting measurement data, but interpreting the measurements, filtering noisy data, resolving potentially
conflicting information, using models to inform its determinations, and forming a single coherent notion of state
knowledge for use across the system. Estimators update a state variable's value as well as its level of certainty. State
control is a process of reacting to state information to generate commands that affect the state of the system under
control in such a way as to satisfy a specified control goal (see Figure 24). Controllers may react to the value of a
state variable, or its level of certainty. Estimators and controllers may be invoked periodically, or in an event-driven
fashion (e.g., conditioned on the arrival of new data or a change of estimated state), depending on the specific
application.

State Analysis adopts the following architectural rules relating to estimators and controllers:
- Estimators are the only architectural components that can update state variables.
- Every state variable is updated by one (and only one) estimator, and controlled by at most one controller

(some state variables are not controllable).
- An estimator can update multiple state variables.
- Estimators are the only components that can process measurements.
- Controllers are the only components that can issue commands to hardware adapters.
- A controller can control multiple state variables.
- A controller can issue commands to one or more hardware adapters.
- A hardware adapter can receive commands from at most one controller.
- An estimator can receive measurements from zero or more hardware adapters (sometimes only indirect

evidence is available).
- A hardware adapter can provides measurements to any number of estimators.

Estimators

H/W Measurements

H/W Commands

State Variable(s)

State
Functions

Models

Past FutureNow

state function is updated:

now now+interval

Unknown

time

State Knowledge Constraints

Estimators

H/W MeasurementsH/W Measurements

H/W CommandsH/W Commands

State Variable(s)State Variable(s)

State
Functions

ModelsModels

Past FutureNowPast FutureNow

state function is updated:

now now+interval

Unknown

time

state function is updated:

now now+interval

Unknown

time

state function is updated:

now now+interval

Unknown

time

State Knowledge Constraints

Figure 23. Estimators use measurement, command and state information, along with models of the
system under control, to satisfy state knowledge constraints (goals) by updating state in the form of state
functions.

American Institute of Aeronautics and Astronautics

23

- An estimator or a controller can issue state constraints to one or more controllers (of other state variables) that
have been delegated to it.

- Estimators and controllers can retrieve state information from state variables.
An important part of the State Analysis process is the specification of estimator and controller algorithms. These

algorithms may be modal (e.g., state machines) or not; they may handle continuous values (e.g., Kalman filter
estimators, linear controllers) or not; they may be of any design that is consistent with the model-based nature of
State Analysis. We encourage, but do not require, that estimators and controllers make explicit use of the models we
introduced in Section 4, but we presume that their translation into software will be as direct as possible (recall the
basic principle from Section 1). State Analysis imposes no additional estimation or control issues beyond those
driven by the problem itself, though it demands that estimators and controllers consider both nominal and off-
nominal behavior of the system under control, and support degraded operations where possible.

1. Example:
As an example of how models can be used in the design of estimators and controllers, Figure 25 presents a

simple estimator for our Camera Power Switch example from Section IV (this example assumes the combined state
variable for Camera Power Switch Position and Health, as depicted in Figure 11). In this case, we adopted a
“pseudo-code” representation for our algorithm specification. This estimator is modal in nature; the estimator is
initialized in ‘inactive’ mode, where it performs no updating of its state variable, and transitions into ‘active’ mode
upon receipt of any knowledge goal on its state variable. We note that, in this case, the mode switching is entirely a
function of the current goal that the estimator is working on. This is in keeping with another general principle in
State Analysis, that estimators and controllers be as stateless as possible, such that the motive for all control system
activity is explicitly captured in the state timelines. In particular, we only allow modal estimator and controller
behavior to be conditioned on issued goals or state information of the system under control. Our estimator makes
explicit use of the command and measurement models we introduced in Section IV, along with the previous estimate
of the state, to produce a prediction of the expected measurement, which it compares to the actual measurement it
received. This is analogous to a traditional “residual” computation in estimation theory, and illustrates a
straightforward way that our models can be used in the control system.

Figure 26 shows a UML (Unified Modeling Language7) collaboration diagram excerpt for our example. The
term collaboration diagram reflects the fact that a control system is a collection of software components
“collaborating” to achieve a common purpose. Collaboration diagrams provide a map of the software component
interconnections and information flow, which can be formally checked against the architecture rules described
above, as a way to spot unusual features of the implementation that deserve scrutiny. These diagrams clearly show
how State Analysis produces requirements on the software, which can be mapped directly into software components
of a modular state-based architecture, such as MDS (see Section VII).

The construction of collaboration diagrams is informed by our state, measurement, and command models, and
can be checked against them as another verification step. For example, our Camera Power Switch Position and
Health estimator can access information on:

- measurements that are affected by the Camera Power Switch Position and Health (in this case, the Camera
Power Switch Sensor measurement produced by the Camera Power Switch hardware adapter);

- other state variables that affect the Camera Power Switch Sensor measurement (i.e., inputs to the measurement
model; in this case, Camera Power Switch Sensor Health); and

Controllers
State Variables Commands

Models

State constraints

Controllers
State VariablesState Variables Commands

ModelsModels

State constraints

Figure 24. Controllers use state information, along with models of the system under control, to satisfy
state constraints (goals) by issuing commands to the hardware adapters.

American Institute of Aeronautics and Astronautics

24

- other state variables that affect the Camera Power Switch Position and Health (though the estimator design in
this example does not use any state information from the Camera Power State, which is an affecting state
variable, per Figure 11).

Similarly, our Camera Power Switch Position controller needs information on other state variables that affect the
results of the Camera Power Switch command (i.e., inputs to the command model). In this case, the only state
information it requires is the Camera Power Switch Position and Health.

Camera Power Switch Position & Health Estimator Algorithm:

Inactive:
estimator is not
estimating and
is waiting for
any constraint

Active:
if SwitchSensorMeas is present,

let PredictedSwitchPosition&Health =
CmdModel(lastSwitchPosition&Health, lastSwitchCmd)

let PredictedSwitchSensorMeas =
MeasModel(PredictedSwitchPosition&Health, SwitchSensorHealth)

if PredictedSwitchSensorMeas = SwitchSensorMeas
Return StateFunction(PredictedSwitchPosition&Health)

else if SwitchSensorHealth = Healthy
if SwitchSensorMeas reads Tripped-Open

Return StateFunction(Tripped-Open)
if SwitchSensorMeas reads Open

Return StateFunction(Failed-Open)
if SwitchSensorMeas reads Closed

Return StateFunction(Failed-Closed)
else Return StateFunction(Unknown)

else
Return no new estimate

Any knowledge
goal on the
Camera Power
Switch Position
& Health

Runs periodically @ 1 Hz
Estimate is valid for 2 seconds, i.e., StateFunction(value) updates the Camera
Power Switch Position & Health state variable as follows:

now now + 2s
Unknown

time

Camera Power
Switch Position
& Health is
unconstrained

value

Figure 25. Simple estimator for Camera Power Switch Position & Health. It uses the Camera Power
Switch Sensor Measurement Model and Camera Power Switch Command Model, and it updates the
Power Switch Position & Health state variable using a State Function. [SV: state variable; HA: hardware
adapter]

Update State

Camera
Power Switch

HA

Camera Power
Switch Position

& Health
Estimator

Camera Power
Switch Sensor

Health SV

Monitor Command
Produce Measurement

Camera Power
Switch Position
& Health SV

Get
State

Camera Power
Switch Position

Controller

Issue Command

Get StateUpdate State

Camera
Power Switch

HA

Camera
Power Switch

HA

Camera Power
Switch Position

& Health
Estimator

Camera Power
Switch Position

& Health
Estimator

Camera Power
Switch Sensor

Health SV

Camera Power
Switch Sensor

Health SV

Monitor Command
Produce Measurement

Camera Power
Switch Position
& Health SV

Camera Power
Switch Position
& Health SV

Get
State

Camera Power
Switch Position

Controller

Camera Power
Switch Position

Controller

Issue Command

Get State

Figure 26. Collaboration diagram showing the estimation and control pattern for the Camera Power
Switch Position and Health state variable.

American Institute of Aeronautics and Astronautics

25

2. Executable Models:
State Analysis makes models available for all state variables in the system under control. This opens up the

possibility of using the state models explicitly during estimation and control. Endowing a spacecraft with the ability
to automatically perform on-line reasoning about its modeled behavior has a number of potential benefits:

1. It relieves the software engineer of the responsibility of a priori encoding into estimators and controllers the
complex set of low-level system interactions under a range of possible nominal and off-nominal situations.
This error-prone task is instead delegated to a model-based reasoning engine that automatically diagnoses and
plans courses of action at reactive time scales, based on models of the system under control, including its
environment.

2. It facilitates software reuse by moving from the current practice of designing and implementing specialized
estimators and controllers from scratch, to a paradigm of providing application-specific engineering models to
a generic re-usable reasoning engine that can correctly synthesize state estimates and control actions.

3. It makes significant progress toward the Holy Grail of provably-correct behavior, by decomposing the
challenging problem of validating the estimation and control software into two simpler problems: validating
the systems engineering models and validating the reasoning engine.

4. It enhances robustness by transparently reasoning about all nominal and off-nominal behavior we have
modeled. Thus, the reasoning engine is able to detect and respond to failures on-the-fly, within the control
diamond loop.

This powerful idea, commonly referred to as “executable models,” is being leveraged in the field of model-based
autonomy. Model-based executives, like Livingstone8 (which was flight-validated on the Deep Space 1 spacecraft),
Livingstone29 and Titan10, have been developed and demonstrated on a variety of mission scenarios and spacecraft
designs.

The potential to exploit executable models has been in our sights from the beginning. The process described in
this paper works directly toward this end, and we have begun to investigate how to leverage the principles of model-
based autonomy in the context of the State Analysis. Our work to date in this area has shown significant promise,
and we are pursuing ongoing work in integrating model-based execution capability into the MDS software
architecture.

VI. Documenting the Models and Software Requirements
The model of the system under control that we produce during State Analysis compiles information traditionally

documented in a variety of systems engineering artifacts, including the Hardware Functional Requirements, the
Failure Modes and Effects Analysis, the Command Dictionary, the Telemetry Dictionary and the Hardware-
Software Interface Control Document. Rather than break this information up into disparate artifacts, we capture all
our model information in a State Database, which has been structured to prompt the State Analysis process. We use
the same State Database to document the requirements on the control system that are produced by State Analysis,
including goal specifications and elaborations, estimator and controller algorithms, and software component
connectivity information (as depicted in collaboration diagrams). Figure 27 shows the main contents of the State
Database, and a sampling of the documents and products that can be produced from the database.

The State Database is shared, central, and globally accessible to promote consistency. It is accessible by a variety
of tools, including a graphical client tool that provides multiple interfaces for access to State Analysis data. This tool
provides multiple convenient user interfaces to the State Database data, including a text-based record editor (which
allows direct access to the models and requirements) and a diagram editor (which currently provides views on the
database via State Effects Diagrams, but will be augmented in the near future to include collaboration diagrams and
graphical modeling representations like StateCharts). Our client tool is designed to be capable of generating a
variety of reports from the information it contains, including the set of documents described above. The State
Database thus provides systems engineers with a tool that consolidates their system and software requirements in a
single place, and allows them to inspect and review this information in whatever form is most appropriate.

VII. The Mission Data System Software Architecture
MDS is an embedded software architecture, currently under development at the Jet Propulsion Laboratory (JPL).

Its overarching goal is to provide a multi-mission information and control architecture for robotic exploration
spacecraft, that will be used in all aspects of a mission: from development and testing to flight and ground
operations. In the process of achieving this ambitious goal, the MDS team has rethought the traditional mission
software lifecycle. MDS acknowledges the intimate coupling between software and systems engineering by

American Institute of Aeronautics and Astronautics

26

leveraging the State Analysis methodology. The regular structure of State Analysis is replicated in the MDS
architecture, with every State Analysis product having a direct counterpart in the software implementation.

The mapping of State Analysis products to software is accomplished via a component architecture. Each state
variable, estimator, controller, and hardware adapter is embodied as a component. State Analysis defines the
interconnection topology among these components according to the canonical patterns and standard interfaces
described in this paper; it provides the required interface details through the definition of state functions,
measurements, commands, and goals; it provides the methods needed for planning, scheduling and execution; and it
defines the functionality of each component to accomplish the desired intent. The component architecture helps to
assure that the system is constructed in accordance with the State Analysis requirements, it aids modular reuse, and
it provides support for a variety of software engineering and analysis issues.

The component architecture is part of a much larger framework of MDS software, wherein each of the concepts
in State Analysis is endowed with a core implementation that provides common features, interfaces, and so on.
These are further constructed upon an in depth support structure of additional layered, modular frameworks
supporting low-level services, extensive libraries in math and physics (e.g., units), data management and transport
functions, high-level automated planning and scheduling engines, and so on. There are nearly thirty distinct core
framework packages. Moreover, as various adaptations of these frameworks for particular projects occur, it is our
intent to factor common elements into an additional set of engineering and science discipline framework packages
for even greater reuse among projects.

The formally coherent structure shared by State Analysis and the MDS architecture has enabled an
unprecedented level of coordination and control of the development process. Requirements are cleanly partitioned
and traceable directly to implementation, making it easy to track and manage each step in the development process.
Verification and validation exploits the same explicit structure, as well as the objective specification of each system
element and the overt declaration of success criteria at all levels of operation.

We have also taken advantage of this structure in an iterative incremental development process with workflow
and configuration management tools specifically built around State Analysis elements and spanning the entire
development life cycle. Metrics gathered from this process are detailed and directly attributable to particular design
elements, enabling far better feed-forward to future development efforts.

A C++ implementation of MDS has been demonstrated on multiple hardware platforms, including the Rocky7
and Rocky8 rovers at JPL. In addition, an MDS adaptation is currently being developed for the Entry, Descent and
Landing (EDL) stage of the Mars Science Laboratory spacecraft, scheduled for launch in 2009. This flight software
prototype currently runs in a workstation environment, against a simulation of the EDL scenario. A simpler Java
implementation of the MDS architecture, called GoldenGate,11 has also been demonstrated on the Rocky7 rover.

Goal
Specs

Software
Component

Specs

State
Models

Etc…

State Database
State

Variable
Dictionary

Goal &
Activity

Dictionaries

Collaboration
Diagrams

Goal
Elaboration
Diagrams

Estimator &
Controller
Algorithm

Specs

Graph State
Variable

Diagrams

Command &
Measurement
Dictionaries

State
Effects

Diagrams

Goal
Specs

Software
Component

Specs

State
Models

Etc…

State Database
State

Variable
Dictionary

Goal &
Activity

Dictionaries

Collaboration
Diagrams

Goal
Elaboration
Diagrams

Estimator &
Controller
Algorithm

Specs

Graph State
Variable

Diagrams

Command &
Measurement
Dictionaries

State
Effects

Diagrams

Figure 27. State Analysis products captured in the State Database.

American Institute of Aeronautics and Astronautics

27

VIII. Conclusion
State Analysis is a Systems Engineering methodology that improves on the current state-of-the-practice. It does

so by leveraging a state-based control architecture to produce requirements on system and software design in the
form of explicit models of system behavior. This provides a common language for systems and software engineers
to communicate, and thus bridges the usual gap between software requirements and software implementation. This
provides a powerful framework for engineering robust embedded systems, and also promotes the infusion of
advanced model-based autonomy technologies. Therefore, we believe State Analysis is a systems engineering
methodology for today's complex systems that can carry us well into the future.

Acknowledgments
The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. We wish to thank the rest of
the Mission Data System development team, and the Mars Science Laboratory mission personnel who have
participated in the maturation of the State Analysis methodology and tools. In particular, we would like to
acknowledge Daniel Dvorak, Russell Knight, Stephen Peters, George Rinker and Marcel Schoppers, the other co-
instructors of the State Analysis training class, from which the material in this paper was inspired.

References
1D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Software architecture themes in JPL's Mission Data System,”

Proceedings of the AIAA Guidance, Navigation, and Control Conference, number AIAA-99-4553, 1999.
2D. Dvorak, R. Rasmussen, and T. Starbird, “State Knowledge Representation in the Mission Data System,” Proceedings of

the IEEE Aerospace Conference, 2002.
3M. Bennett and R. Rasmussen, “Modeling Relationships Using Graph State Variables,” Proceedings of the IEEE Aerospace

Conference, 2002.
4D. Harel, “Statecharts: A visual formulation for complex systems,” Science of Computer Programming, 8(3):231-274, 1987.
5A. Barrett, R. Knight, R. Morris, and R. Rasmussen, “Mission Planning and Execution Within the Mission Data System,”

Proceedings of the International Workshop on Planning and Scheduling for Space, 2004.
6S. Chung, Decomposed symbolic approach to reactive planning, S.M. Thesis, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, Cambridge, MA, 2003.
7G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley Longman, Inc.,

1999.
8B.C. Williams and P. Nayak, “A model-based approach to reactive self-configuring systems,” Proceedings of the 13th

National Conference on Artificial Intelligence (AAAI-96), volume 2, pages 971-978, 1996.
9J. Kurien and P. Nayak, “Back to the future for consistency-based trajectory tracking,” Proceedings of the 18th National

Conference on Artificial Intelligence (AAAI-02), pages 370-377, 2000.
10B.C. Williams, M. Ingham, S. Chung, and P. Elliott, “Model-based programming of intelligent embedded systems and

robotic space explorers,” Proceedings of the IEEE, 91(1):212-237, 2003.
11D. Dvorak, et al., “Project Golden Gate: Towards Real-Time Java in Space Missions,” Proceedings of the 7th IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2004), 2004.

