

Automated Methods for Integrating Systems (AMIS) Project Overview

(presenter)

Manufacturing Systems Integration Division National Institute of Standards & Technology

Motivation

- Problem: Integration of systems in manufacturing enterprises
 - Integration is a constant process driven by:
 - New technologies
 - New capabilities
 - New ways of doing business
 - New partners
- Old solution: Standards
- Alternative: Automate Integration

Typical Integration Problem

AMIS approach

- Ontology Extraction:
 - Capture Local Interaction Models of existing software systems or standards
- Specify Joint Action Model for the integration
- Semantic Mapping:
 - Map the Joint Action Model to the Local Interaction Models of the components
- Connector Transformation:
 - Generate Wrappers or Interceptors to link the engineered interface implementations

AMIS approach

- Ontology Extraction
- Specify Joint Action Model
- Semantic Mapping
- Connector Transformation

"Ontology Extraction"

- Capture Local Interaction Model of existing software or standard
 - Capture "business" concepts underlying the software design = Local Conceptual Model
 - Capture "technical" interaction concernsLocal Engineered Interface Model
 - Link business concepts (entities, properties, relationships, actions) to technical representations
 - Capture all models and links in a form suitable for automated reasoning

Engineered Interface Capture

Local Conceptual Model Capture

Local Conceptual Model

Identifies functions/services provided by Tool, and services it expects to use

Identifies business entities, properties, relationships referenced in services

Links-across-views Capture

Relates local business elements to engineered interface elements Captured with the Local Interaction Model

AMIS approach

- Ontology Extraction
- Specify Joint Action Model
- Semantic Mapping
- Connector Transformation

Specify the Joint Action Model

- Specify the Joint Action Model for the integration
 - Capture the required interactions in business terms
 - Capture the business entities used and affected
 - Joint Action Model is a conceptual model, will have same basic structures as a Local Conceptual Model, but perhaps different organization and terms

Human Conceptualization

Joint Action Specification

Joint Action Model

AMIS approach

- Ontology Extraction
- Specify Joint Action Model
- Semantic Mapping
- Connector Transformation

Semantic Mapping

- Match Joint Action Model terminology with Local Interaction Model terminologies
- Interpret Joint Actions to graphs of expected interactions specified in LIMs
- Compose Semantic Maps for terms/actions with Links-across-views => Integration-end maps
 - define engineering mappings for JAM actions, messages and information units
 - one mapping for each participating system

Terminology Mapping

Interaction Planning

Integration-End Mapping

Integration-End Map example

Relates Joint Action elements to engineered interface elements for one end (component) of the joint action

Integration Mapping

JAM transaction is mapped to messages/fields in each EIM Defines technical integration requirements

AMIS approach

- Ontology Extraction
- Specify Joint Action Model
- Semantic Mapping
- Connector Transformation

Connector Transformation

- Generate Wrappers or Interceptors to link the engineered interfaces
 - Based on the JAM, the Local EIMs and the Integration-End mappings
 - Formalize all information required for transformations of syntax, structure, and choreography, down to lowest level of abstraction
 - Tools generate dynamic message converters
 - Expand to support dynamic "technology" conversion;
 specific knowledge bases for "middleware technologies" must be developed

Connector Transform Tool

Nominal Message Mapping

Composing integration-end mappings defines required message mappings

Example Message Converter

tool generates runtime message converter for CIDX ←→ OAGIS

Conclusions

Challenges

- Constructing a useful knowledge framework for Local Interaction Models and Joint Action Models
- Extracting Local conceptual models and engineering models from specifications as received
- Defining "semantic mapping" algorithms
- Building a sufficient knowledge base for transformations
- Automating analysis and resolution of technical mismatches

Conclusions

- Value added
 - Improve interface/service specifications
 - Improve knowledge capture for existing software systems and standards
 - If it works, greatly reduce the time and cost of "systems integration" projects
 - Otherwise, identify the unsolved problems and provide knowledge for new toolkits

AMIS Project Staff

- Ed Barkmeyer project leader
 - edbark@nist.gov
- Peter Denno ontology extraction
 - pdenno@nist.gov
- Dave Flater, Don Libes connector transforms
 - dflater@nist.gov, libes@nist.gov
- Evan Wallace semantic mapping
 - ewallace@nist.gov
- Nenad Ivezic and NIST Testbed staff
 - scenario and JAM development

Co-Researchers

University of Maryland MIND Lab

Papers

- Barkmeyer, et al., Concepts for Automating Systems Integration, NIST IR 6928, (2003), www.nist.gov/msidlibrary/doc/AMIS-Concepts.pdf
- Denno, P., Steves, M., Libes, D., Barkmeyer, E., Model-Driven Integration Using Legacy Models, IEEE Software, (2003)
- Libes, et al., *The AMIS Approach to Systems Integration:* an Overview, NISTIR xxxx (2004), in publication