PAGE
1
eBTWG – Business Entity Types Technical Specification v0.13
Page .

eBTWG – Business Entity Types Technical Specification

1st Working Draft
UN/CEFACT/CSG/eBTWG
Business Entity Type Library Project Team
Revision #0.13
19 August 2002

Table of Contents
1eBTWG – Business Entity Types Technical Specification

11st Working Draft

31
Overview

31.1
Status of this Document

31.2
Introduction

31.2.1
Summary of Contents of Document

41.2.2
Audience

41.2.3
Related Documents

41.3
Objectives

61.3.1
Caveats and Assumptions

61.4
Overview

61.4.1
Executive Summary

61.4.2
eBTWG and UMM context

71.4.3
Essence of BETL

71.4.4
BETL working hypothesis

91.4.5
Business Entity Types

111.4.6
How the Business Entity Type Specification Works

111.4.6.1
Use of BET in process construction

121.4.6.2
Use of BET in information construction

131.4.6.3
BET relationship to Core Components in UMM

151.4.7
Where the Business Entity Type Specification May Be Implemented

151.4.7.1
Business Entity Type Library implementations

151.4.7.2
Local Business Entity Type implementations

161.5
BETL Technical Specification

161.5.1
BET Packaging

161.5.1.1
BETL - Collaboration Package Dependencies

171.5.1.2
BET packages

191.5.2
Business Entity Type Components Definition

191.5.2.1
BET identity

191.5.2.2
BET business semantics

211.5.2.3
BET lifecycle – state model

231.5.2.4
Business Entity State

231.5.2.5
Business Entity Content

241.5.3
Business Entity Type Use

241.5.3.1
BET state used in business metrics

241.5.3.2
BET state used in business contracts

241.5.3.3
BET state used as transition conditions

271.5.3.4
BET state used as requirements for business document content

271.5.3.5
BET semantic used as requirements for business document content

282
BET Model Expression and Binding

282.1
BET Model

292.1.1
BET Class Model Expression

292.2
BET Binding

302.3
BET Identity Expression

302.3.1
BET Identity Model Expression

302.3.2
BET Identity Binding to Business Information Entities

312.3.3
BET Identity Binding to Business Services

312.4
BET Business Semantic Expression

312.4.1
BET Business Semantic Model Expression

322.4.2
BET Business Semantic Binding to Business Information Entities

322.4.3
BET Business Semantic Binding to Business Services

322.5
BET Content Expression

332.5.1
BET Content Model Expression

332.5.2
BET Content Binding to Business Information Entities

332.5.3
BET Content Binding to Business Services

332.6
BET Lifecycle Expression

342.6.1
BET Lifecycle Model Expression

342.6.2
BET Lifecycle Binding to Business Information Entities

342.6.3
BET Lifecycle Binding to Business Services

342.7
BET State Expression

352.7.1
BET State Model Expression

352.7.2
BET State Binding to Business Information Entities

362.7.3
BET State Binding to Business Services

363
Business Entity Execution

363.1
Business Entity Instance

373.2
Construction of the Business Entity Instance

373.2.1
Business Entity Instance Structure

383.2.2
Business entity instance production rules

393.2.2.1
Required production rules

393.2.2.2
Optional production rules

403.3
Application of Business Document to Business Entity Instance

403.3.1
Business Document Application Production Rules

413.3.2
Business Information Entity binding

413.4
Access to Business Entity Instance Content

413.4.1
Access to XML Implementations of Business Entity Instance

413.4.2
Access to Object Oriented Implementations of Business Entity Instance

424
Disclaimer

425
Contact Information

426
Project Team Membership

437
Copyright Statement

448
Appendixes

44Appendix A – Example BET Models

45Appendix B – Example BET Model XML Expressions

46Appendix C – Example BET Model use in a business collaboration and commitment specification

47Appendix D – Example BET Instance XML Appendix E – REA (Resource-Event-Agent) Introduction

48Appendix E – REA (Resource-Event-Agent) Introduction

49Appendix F – Fowler based specification syntax

1 Overview

1.1 Status of this Document

This document specifies an eBTWG DRAFT for the ebXML and UN/CEFACT eBusiness community.

Distribution of this document is limited to team members and guests pending team consensus on document release.

The document formatting is based on the eBTWG Standard format.

1.2 Introduction

1.2.1 Summary of Contents of Document

This specification describes the structure, syntax, and semantics for industry standard expression of business entity types. This specification describes a business entity type framework for consistent prescriptive computation of named business entity states and their lifecycles used in the expression and execution of business collaborations and business commitments. This specification describes how business entity type content relationships express requirements for composition of entity representations of common business objects, and how their mapping onto the business entity states is applied to the execution of a business collaboration.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97]

1.2.2 Audience

The target audience for this specification is business process modelers and business-to-business implementation professionals describing business collaborations.

1.2.3 Related Documents

As mentioned above, other documents provide detailed definitions of some of the components of Business Entity Types and of their relationships. They include eBTWG Specifications on the following topics:

· Business Collaboration Patterns and Monitored Commitments

· Business Process Specification Schema

· Business Collaboration Protocol

· Core Components and Business Information Entities

· Business Process and Information Model Exchange Schema

1.3 Objectives

Problem Statement: Businesses collaborations are used to align partners on the execution of business operations processes. These processes consist of business actions resulting in changes to the business state of business objects. Decisions occur within the collaboration, often conditioned on the state of the objects of the collaboration. The common definitions of these states and the content that defines these states are an essential part of the collaborative agreement. These definitions are referenced and specialized repeatedly in common collaborative agreements. There does not currently exist standards mechanism to express and extend the common states and semantics of collaborative business objects that is independent of implementation syntax. This specification is designed to address this problem.

Goals:

· A framework for reusable definitions of conditions (named business entity states) usable for business collaboration preconditions, success and failure conditions, and transition conditions as well as business commitment fulfillment conditions

· An expression of the lifecycle of business entity types, usable for declarative dependencies between groups of business transactions using or referencing a business entity

· An expression of content requirements for alignment of business entity state used to drive composition of documents exchanged

· A business object rules foundation for business collaboration models

· An ontology and framework for business semantics of business entities

Requirements:

· UMM currently uses OCL conditional statements to define start and end states, pre and post conditions, and transitions. BETL MUST provide a method of defining these conditional statements in terms of the business entities being referenced

· BETL MUST provide support for normalization of collaborative view of business entity states referenced by multiple collaborations. This requires entity identity and entity lifecycle.

· BETL MUST define the process and provide guidance in the selection and normalization of base elements that would be suitable for the population of a lexicon

· Definition of a persistent state space for the entities of business collaborations.

· The basis for business semantics SHOULD be the REA (Resource-Event-Agent) ontology. There will be additional business semantic entities needed that are not explicitly included in the REA ontology. For example, Terms and Conditions, Specifications and Observations

· BETs need behavior, not just identity, information and state. Some required behaviors include fulfillment, time constraints and exceptions.

· Economic Commitments provide specifications for the Economic Events that should fulfill them. When the Economic Event happens, it needs to be compared against the specification. This comparison will not only determine the state change of the commitment, but also may raise exceptions.

· BETs SHOULD be able to raise and handle common exceptions, such as expiration of time constraints and Economic Events that do not fulfill commitments.

· Business collaborations require time constraints for events, similar to the timeouts on the UMM Business Transaction level. For example, Commitments will specify time constraints on the Events that should fulfill them. If the time constraint expires without fulfillment, an exception SHOULD be raised. This behavior will probably require something like a Scheduler entity to keep track of the constraints and raise exceptions.

· Actors and roles
are BET in the BusinessEntityType library

· There MUST be a metamodel of BET characteristics and relationships.

· The UMM economic modeling elements and their relationships provides the basis for, BET candidates

· BET methods include business entity updates of, and queries on, business entity state,

· Basic BETs MUST be able to be extended to meet scenario or context requirements without programming

· BETL specifcation MUST relate business information entities in business documents (as described in the Core Components Specification) to the ability to align business entities on each side of a collaboration

· The constraints expressions of BusinessEntityType state MUST resolve to TRUE or FALSE through binding with elements defined in associated BIEs

1.3.1 Caveats and Assumptions

· The Business Collaboration Pattern and Monitored Commitments specification places the use of BETs in the context of a business collaboration specification and execution. Familiarity with the BCP&MC specification is recommended for a complete understanding of the Business Entity Type requirements.

1.4 Overview

1.4.1 Executive Summary

The eBTWG Business Entity Type Library (BETL) provides a framework of standardized Business Entity Type (BET) packages. These packages describe behavior, composition, and purpose of persistent business entities that are the subject of business collaborations. For businesses to optimize their execution of supply chain relationships, they must align their definitions of the expected results of their collaborations. These results are expressed as business entities and may be the subject of multiple collaborations which occur over time. These business entities usually have persistent existence in the databases of both trading partners, and alignment of these instantiations to a shared definition is critical to achieving alignment between the business intentions of each partner during process execution. The BET specification provides a Business Requirements View (BRV) mechanism for identifying and elaborating these entities.

1.4.2 eBTWG and UMM context

The Business Entity Type Library is intended to provide a resource for:

1) Reusable definition of conditions (business entity states) used for business collaboration preconditions, postconditions, and transitions;

2) Identification and construction of business objectives and semantics;

3) Requirements and constraints for business document content; and

4) Requirements and constraints for business service execution with respect to local business object instances.

In the context of the UMM, this allows the formalization of business semantic, as well as a more formal declaration and elaboration of

· the guards on start and end transaction states, and

· the guards on transitions between business transactions in the definition of a complex collaboration.

In the context of eBTWG this establishes a mechanism for mapping the collaborations onto an integrated and reusable set of domain definitions instead of the current complex conditionals that reference elements of transitory business messages.

Business Entity Types
are essential to meeting the objectives of eBTWG:

· Partner Information Alignment: ”You know what I think you know”

· Partner Process Alignment: “You are doing what I think you are doing”

· Partner Expectations Alignment: “We will accomplish what we expect to accomplish”

1.4.3 Essence of BETL

· Understanding the behavior and lifecycle of business entities is critical to the objectives of the eBTWG

· Business entities have identity and persist over time in the public collaboration domain

· The BETL provides a model exposing business entity state space in the public collaboration domain

· Business collaboration use cases take business entities from one reference state to another reference state

· There are clear business semantics (business objectives) attached to business entities. Classifying business entities according to the REA ontology provides a significant economic and accounting milieu to the construction and use of business entities

1.4.4 BETL working hypothesis

· The objective of a business collaboration is best described by a set of business entities reaching specific states. (For example, the objective of a procurement collaboration is a delivered product and an accepted payment
)
· These states are directly related to the business objectives of that entity in the collaboration

· The collaboration specification identifies referenced business entities and expresses their reference states

· Normalization of both business entity reference states and the relationship of those state to the business
semantics clarifies the understanding and expression of collaboration dependencies

· Business entities will go through a lifecycle of states, changing their individual states via exposed behavior

· The goal of a business collaboration protocol is to achieve alignment between partners on these states and business semantics

· Normalization of sets of conditions into business entity states allows the evolution of the definition of these states over time, and allows the management of the effect of state definition evolution over a large body of business behavior specifications.

1.4.5 Business Entity Types

Business Entity Types are normalized expressions of common business entities.
 Libraries of business entity type are expected to facilitate consistency in business object expression. The definition and construction of business entity type are organized into five areas: Identity, Semantic, Content, Lifecycle, and State.

· Identity expresses how the elements of a business object work together to uniquely identify an instance of the object during its lifetime.

· Semantic expresses how the elements of a business object work together to declare and execute business value

· Content expresses how the elements of a business object are implemented as information

· Lifecycle expresses how the elements of a business object work together to declare and execute behavior, or change over time

· State expresses how the elements of a business object work together to declare and record an expected business result

Often there will be business entity types that are composite aggregations of other business entity types. These composite BETs reference and reuse their component BETs within the composite BET package. These composite BET have their own identity, lifecycle, business semantic, and state despite the fact they are a compositional element of another BET.

[image: image2.emf]

Business Entity Type Package Composition

BusinessEntityType

BusinessEntityType

Model

identification

fulfillmen

BusinessEntityType

ImplementationSchema

identification

fulfillmen

identification

fulfillmen

identification

whenInForce

fulfillmentSpecification

isPartialCommitmentAllo

wed

BusinessEntityType

UsageDocumentation

identification

fulfillmen

identification

whenInForce

fulfillmentSpecification

isPartialCommitmentAllo

wed

responsibleParty

resourceSpecification

1..n

0..n

0..n

[image: image3.emf]

Business Entity Type Package Dependencies

identification

fulfillmen

identification

fulfillmen

BusinessCollaboration

BusinessCommitment

BusinessEntityType

identification

fulfillmen

identification

BusinessProcess

identification

fulfillmen

identification

1.4.6 How the Business Entity Type Specification Works

1.4.6.1 Use of BET in process construction

The business entity states identified and formalized in the business entity lifecycle provide encapsulated semantic definitions that may be used to replace the constraints expressed in the condition statements used to guard collaboration transitions and define collaboration start and success states. The business entity state MAY be used in the expression of the collaboration activity model, and depending on implementation technology are either elaborated into constraint expressions or used directly in the business collaboration expressions such as BPSS. The events resulting from state changes are an effective mechanism for driving business transaction execution. The existence of an ontology (set of expressions)
 of these states allows the BRV model to be completed without referencing specific business document properties, allowing these expressions to be independent of specific business document syntax.

The following diagram shows the dependencies of business collaborations on business entities for the use of business entity states in the expression of collaboration constraints conditions, and events.

[image: image4.emf]

UN/CEFACT Modeling Methodology

UMM Step 1

Model Operations:

- Identify process

- Identify

reference

 business

elements

UMM Step 2

Model Requirements:

- Model use case

- Elaborate business

process activity model

- Elaborate

business

collaboration tasks

Start

UMM Step 3

Model Transactions:

- Elaborate

transactions

- Elaborate Business

 Entities

“All needs” includes all

elements necessary to

communicate and

resolve entity states

expressed as activity pre

and post conditions and

transitions

Core Components Methodology

(from CC

Specification fig 5-1)

Dependency

(note that

steps 1&2 will

not be used by

everyone)

Aggregation

(CC Method is

part of UMM

step 3

[image: image5.emf]

Business Entity Type Model

<<Stereotype>>

BusinessEntityType

#baseClass : string=“Class”

+identification : string

+name : string

+description : text

<<Stereotype>>

BusinessEntity

BusinessEntityIdentity

+identityConstraint : Expression

<<Stereotype>>

BusinessEntityLifecycle

#baseClass : string=“Statemachine”

+identification : string

+name : string

+description : text

+lifecycleConstraint : Expression

Organization

Organization

Namespace

Namespace

1 *

1

1

*

B

u

s

i

n

e

s

s

E

n

t

i

t

y

C

o

n

t

e

n

t

+

c

o

n

t

e

n

t

C

o

n

s

t

r

a

BusinessEntitySemantic

+semanticConstraint : Expression

+useDescription : text

BusinessEntitySemantic

+semanticConstraint : Expression

+useDescription : text

<<Stereotype>>

BusinessEntityState

#baseClass : string=“State”

+identification : string

+name : string

+description : text

+entryCondition : Expression

+exitCondition : Expression

<<Stereotype>>

EconomicElement

<<Stereotype>>

EconomicElement

+reaType

+reaType

BusinessEntityContent

+contentName : string

+contentConstraint : Expression

+compositionDescription : text

<<Stereotype>>

BusinessInformationEntity

+documentElementMapping :

 Expression

+implementation

*

+requiredContent +visibleContent

*

*

*

<<Stereotype>>

Context

+context

1

+instanceIdentification

+versionIdentification

*

1

*

*

+semanticParent

+semanticContent

SemanticElement

+identification : string

+semanticName : string

+description : text

+constraint : Expression

1

1

*

1

*

*

*

*

+component

+externalDefinition

1.4.6.2 Use of BET in information construction

Business Entity Type identity, semantic, and state definitions provide requirements which are elaborated into specific business entity attributes (content). These attributes carry the business information realizations of the identity, semantic, and state. There are specific relationships between the elements of the BETL and the elements of Core Components: 1) The BusinessInformationEntity namespace SHOULD provide the ontological basis for naming the subset of Entities that are Objects (have instance identity). 2) An identification of an instance of a BET is implemented using BIE. 3) Identification of semantic of a BET is implemented using BIE. 4) Identification of state of a BET is implemented using BIE. 4) BET will provide requirements for additional BIE content (to render them capable of aligning partners on the required states).

The following figure shows the dependencies between Business Entity Type components and Core Components components.

[image: image6.emf]

Business Entity Type Semantic Example

<<EconomicContract>>

ProductOrder

 +tendered() : Boolean

 +accepted() : Boolean

 +rejected() : Boolean

 +cancelled() : Boolean

<<EconomicCommitment>>

PaymentCommitment

+fulfillmentConditions

ShipmentTerms

1..*

<<EconomicContract>>

Order

PaymentTerms

<<EconomicCommitment>>

GoodsCommitment

+fulfillmentConditions

<<Reciprocity>>

<<Duality>>

<<EconomicEvent>>

PaymentEvent

<<EconomicResourceType>>

MethodOfPayment

<<EconomicClaim>>

Invoice

 +paid() : Boolean

<<EconomicEvent>>

ShipmentEvent

<<EconomicResourceType>>

ProductSpecification

<<EconomicResource>>

Goods

<<EconomicResource>>

Funds

+lineItem

materializes settles

[image: image7.emf]

Business Entity Types

BET

BET

State

BET

Lifecycle

BET

Identity

BET

Business

Semantic

BET

Content

1.4.6.3 BET relationship to Core Components in UMM

The diagram below places Business Entity Types and the Core Components process in the context of a simplified and abbreviated UMM process. Step 1 of the UMM process identifies business elements. These business elements are the first view of business entities. These business elements are identified both through enumeration of business elements in the domain, and through discovery of business elements by elaboration of business objectives statements (e.g. the statement “90% of Orders fulfilled as originally defined” discovers the “Order” business element / business entity). Step 2 of the UMM includes identification of business semantics and business process transitions. The elaboration of the business semantic and collaboration transition identify business entities when entity related information is referenced by collaboration and semantic conditional statements. (e.g. the statement “Shipment Process can transition to the ‘delivery to carrier’ transaction when Letter Of Credit (L/C) is Authenticated” identifies the Letter Of Credit business entity). Step 3 of the UMM process contains the elaboration of the BusinessEntities required by the BusinessTransactions, and that the CoreComponents process provides a detailed method for this elaboration (CC process is part of UMM step 3). When the entire UMM is being followed, there is a dependency between the CC process and BET definition in UMM step 2, since step 2 would identify all of the processes that are elaborated and the states that are expressed (preconditions, postconditions, and transition conditions) by instances of a BIE. The decision in the diagram below “Do they meet all needs?” is evaluated by examination of business process constraints and verification that business entity content and state have been identified.

[image: image8.emf]

<<BusinessElement>>

Business

Entity

Type

Business

Entity

State

Business

Collaboration

UseCase

constraint

Business

Transaction

precondition

success / failure

condition

Business

Entity

Lifecycle

Business

Collaboration

Protocol

elaboration

statechange event

elaboration

transition

condition

s

[image: image9.emf]

Business Entity Types

Core Components

Basic

BIE

Aggregate

BIE

Basic

CC

Aggregate

CC

BET

BET

State

BET

Lifecycle

BET

Identity

implementation

implementation

implementation

Context and

Requirements

BET

Business

Semantic

implementation

BET

Content

1.4.7 Where the Business Entity Type Specification May Be Implemented

The Business Entity Type specification MAY be implemented as a set of standard definitions in Business Entity Type Libraries or as specific definitions local to business collaboration specifications. The libraries will provide a set of standard business entity type expressions that MAY be used as templates for specializations used in specific business situations and used as standard common business entity type definitions. The business entity types used in specific business collaboration specifications will provide definitions of content and state used to constrain collaboration transitions and commitment / fulfillment conditions.

1.4.7.1 Business Entity Type Library implementations

Business Entity Types are implemented in libraries to provide pervasive
access to standardized business entity definitions. Business Entity Types provide reusable definitions that can improve both consistency and time-to-completion of e-business integration projects. Business Entity Types have industry specific specializations that capture the best practices of those industry verticals. Libraries of Business Entity Types are essential to consistent implementations within these scenarios. These libraries provide facilities for locating and retrieving standard business entity types, for making iterative improvements to business entity types, and for publishing new business entity types.

1.4.7.2 Local Business Entity Type implementations

Business Entity Types are implemented in local specifications to provide structure to the semantic definition of referenced business objects and constraint expressions. Business Entity Types provide semantic definition for key conceptual elements such as class inheritance, state behavior, and content use. These conceptual elements are used within local specifications to communicate the definition and semantic of a set of constraints upon the business entity content.

1.5 BETL Technical Specification

1.5.1 BET Packaging

This section describes the construction and use of BET specification packages.

1.5.1.1 BETL - Collaboration Package Dependencies

The Business Entity Types from a Business Entity Type Library will be referenced by Common Business Process Library packages, by Business Collaboration and Business Collaboration Pattern packages, and by Business Commitment packages

Business process specifications reference Business Entity States in their condition and constraint expressions. Business commitment and business collaboration specifications reference Business Entity States in their inForce conditions, specification conditions, and fulfillment conditions.

The following diagram shows the dependency hierarchy between BusinessCommitment, BusinessCollaboration, BusinessProcess, and BusinessEntityType packages.

1.5.1.2 BET packages

Business Entity Types are implemented as models. These models will be stored in repositories (libraries) as packages. A package is a container that can hold artifacts related to the package subject. A Business Entity Type package represents a specific common business object. The Business Entity Type package will include expression of identity, state, business semantic, and content. It is expected that sets of business entity types will be defined by both standards organizations and enterprises. These organizations will publish business entity packages and construct a namespace for the names of the business entity types. A BET package SHOULD contain best practices documentation as well as various model and implementation artifacts that MAY be either syntax specific (schema) or syntax neutral (model).

1.5.2 Business Entity Type Components Definition

This section elaborates on the five components of business entity type: Identity, Semantic, Content, Lifecycle, and State.

1.5.2.1 BET identity

Business entities have identity. Business entities exist over time and are abstractions of real world business objects. Instances of business entity type are mapped to the real world business objects through the properties that provide unique identification of the real world business object. This key capability allows the objectives of business collaborations to be coordinated and monitored over participant and time-related boundaries. Consistent identification is essential for enforceability and audit of an electronic representation against its real world object.

1.5.2.2 BET business semantics

Business entity types have business semantics that describe the role of the BET in fulfilling business commitments.

In modeling the economic affairs of an enterprise, the usual purpose is descriptive in the sense that actual transactions involving real parties exchanging actual resources are all represented. For example, an automobile manufacturer buying an assembled seat from a part supplier would involve instances of each of the following business entity types:

· Economic Resources of Cash and Inventory (money and the seat as identified by an account number or part#);

· Economic Events of Shipment and Payment (the actual physical transfers of the seat and the cash as identified by a document or timestamp);

· Economic Partners of Buyer and Seller (the actual employees of those companies acting as the agent for the organization); and

· Economic Contract with the bundled commitments specified (the actual purchase order with line items for the various resources and a projected payment schedule)

When these object classes (such as Inventory, Shipment, Buyer, or Contract) are typified, new classes are produced like Inventory-Type (dangerous vs. non-dangerous), Shipment-Type (partial vs. complete vs. combined), Buyer–Type (different groups of those agents with different certification requirements), and Contract-Type (long-term with periodic releases vs. one-off short term). Combinations of these new type classes can be used in a prescriptive or normative sense to specify policy or expected economic behavior in proposed collaboration patterns. Thus a registered Order-Fulfillment-Settlement pattern might not allow any haphazard grouping of instances of inventory-shipment-buyer-contract, but specify instead a business rule like “dangerous cargo can only be authorized by a certified buyer in a single complete shipment governed by a particular type of long-term contract.” The necessity for these knowledge-level or prescriptive policy specifications merits the inclusion of semantic elements in the BET specification.

The business semantics are expressed using REA economic element stereotypes. The REA economic element stereotypes fulfill roles in the definition of a business commitment and the monitoring of the fulfillment of that commitment. REA is further described in appendix E – REA Introduction.

In the diagram below, each class with an economic stereotype is a business entity. The economic stereotype is the “root REA business semantic” of the business entity. Business semantics can be specified or inherited by any business entity. For instance, a services specification can declare that it is an economic resource type, or it could declare itself as a subclass (specialization) of a product specification, which is itself an economic resource type. In the first case, the services specification is free to evolve independently of the product specification. In the second case, the services specification re-uses all of the semantics of the product specification, plus it also re-uses any of an interfaces defined for the product specifications guaranteeing consistency between the product specification and services specification.

1.5.2.3 BET lifecycle – state model

A Business Entity Type has one or more state models expressing the lifecycle of that BET. Only states that are referenced in the collaboration are expressed in these models. The BET models define the entrance and exit conditions for these states, as well as allowed transitions between states in the BET lifecycle. Any BET MAY have different lifecycle expressions for specific context. Timing constraints on states and state-to-event dependencies are expressed on the entry and exit conditions of each state expression.

1.5.2.4 Business Entity State

Business entity state defines the expected business result at a point in the entity lifecycle. Business entity state are used to constrain collaboration behavior by defining the conditions under which a collaboration is required, and the conditions under which a collaboration is considered a success, or a failure.

The states are computed using OCL expressions on BE instance. These OCL state expressions define the conditions for a BE to enter a state (entry conditions) and the conditions for a BE to leave a state (exist conditions). The BE instance is the compilation of BE information visible to the collaboration at a point in time. The BE Instance is virtual in nature, but concrete in definition (e.g. it is used to define and evaluate behavior, but might never actually be constructed in a collaboration).

1.5.2.5 Business Entity Content

A business entity type includes the specification of its content. For example, a shipment may have a Bill of Lading [B/L Number, Route, Goods Description] License [License Number, Legal Description], and Goods [Goods Description, Quantity, Goods Identifiers] (each of which is itself a business entity). The business entity content describes the elements composing business entities of a business entity type. A business entity will have many implementations, all of which contain elements of its content. These implementations will vary depending on technology and container, such as database, document, and interface. The business entity content provides a semantic anchor for all of these representations, as well as a connector for other elements of the business entity type (such as identity, semantic, and state) to link to expressions of that content. For example, the Shipment Identity is the Bill of Lading Number; the Shipment has semantic of both contract (Bill of Lading) and event (Goods Delivery); and the shipment goes through several states (Tendered, In Transit, Arrived, Cleared, Delivered).

1.5.3 Business Entity Type Use

1.5.3.1 BET State used in Business Metrics

Business people express business metrics in terms of business object states. For example “Ninety percent of the orders [object] were fulfilled [state] on time” or “Fifty percent of customer inquiries [object] were addressed [state] with three days”. Often business metrics are used to describe coordinate the execution of collaborative partnerships. In these cases the definition of object-in-state terms can be crucial to business partners meeting each other’s expectations. The business entity type provides a method for partners to collaboratively agree on the definition and verification of these shared metrics by using the shared definition of business entity states.

1.5.3.2 BET State used in Business Contracts

Business people express business contracts fulfillment criteria using business object states. For example “I agree that I will pay for the goods [object] when they are inspected [state] and delivered[state]” or “Repairs will be made by an engineer [object] who is certified[state]”. The business entity type provides a method and mechanism for partners to collaboratively define, communicate, and enforce these shared contract objectives.
1.5.3.3 BET State used as Transition Conditions

Business people express process transitions in term of business object states, for example “we ship the goods when the payment [object] is received [state]”.
The business also MAY specialize the definition of that state for a particular business context, for example “generally, we pay for raw materials when the goods are received. For the automobile industry however, we pay when the components
are entered into a production run”. The BET provides a mechanism to formally define the states of a business entity. The availability of these states improves the consistency, extensibility, communication, and implementation of collaboration and commitment protocols.

The states are used in conditional expressions to associate the expected business results (business entity state) with business process execution (business collaboration activity transitions) and business success (business collaboration activity success conditions). This bundling of technical criteria into business criteria by bundling information conditions into business entity state allows both the definition of state and the behavior dependencies on state to effectively evolve over time.

The normative method for expressing transition conditions containing business entity state is with OCL expressions on a business entity instance. The business entity instance is materialized by the application of production rules described in section 3.2 to a business collaboration instance and its component business transactions and business documents.

There are many additional possible syntax for conditional statements that reference business entity state. In any case the conditional syntax must be able to expand the definition of state or be able to call a method to evaluate the intermediate result for use in an expression. Some additional syntax examples for BETs are described below:

· A possible syntax would be to express the defined state of a BET as Boolean . The method returns true when the state is active. (e.g. Invoice.paid() or Order.approved).

· A possible syntax would be to use XSLT to transform collaboration referenced XPATH by including BET referenced XPATH.

· A possible syntax for conditional statements using object states based on the Fowler Specification Pattern is included in Appendix E.

The following diagram shows how entity-in-state are used as object-flow in a UML activity model diagram.

[image: image1.emf]

Business Process Activity Model

Start State

BusinessCollaborationTask BusinessCollaborationTask

BusinessCollaborationTask

BusinessEntityType

[State]

BusinessEntityType

[State]

BusinessEntityType

[State]

BusinessEntityType

[State]

End State

Synch

Synch

Each activity is a use of one

business collaboration usecase

Business entity in

state

Figure 9: Business Process Activity Model

1.5.3.4
BET state used as requirements for business document content

Business Entity states establish the information requirements for content. This content is referenced for the purpose of determining whether or not a Business Entity State has been attained in the fulfillment of a business commitment.

BET states are used by business partners to identify and define objectives of business collaborations. For example the partnership agreement might call for for payment upon delivery. The BET state “delivered” is used by the parties to define the conditions for acceptable delivery.

The content required to validate the “delivered” state must be exchanged between the parties to justify the requirement for payment. Thus the business entity state will supply contextual requirements for information content in the business documents.

1.5.3.5 BET semantic used as requirements for business document content

Business Entities Types have semantic definition. These semantics express requirements for specific information. The Business Entity inherits base semantics from its REA type, and then specializes that definition for business usability. For instance, a commitment semantic requires the expression of fulfillment conditions, and an event semantic requires the expression of the time period of the event occurrence. By tying these information requirements back to their root semantics business entity specifications and business process specifications become aware of their intended use in business collaborations.

2 BET Model Expression and Binding

This section of the specification prescribes the expression of Business Entity structure in a Business Entity Type model. This section is syntax neutral and assumes there will be multiple syntax specific implementations of these structures.

2.1 BET Meta-Model

Documentation within this chapter refers to the following business entity type meta-model. Each class, property, and association of this model is specified in the following sections. Please note that properties of type “Expression” include subproperties that identify the expression syntax and contain the expression. These subproperties are not shown here to simplify the class model. An expression is a statement that evaluates to a value. For well-formedness constraint expressions the possible values are TRUE and FALSE, with TRUE indicating that the elements and their contents are well formed.

2.2 BET Class Model Expression

The model elements providing expression of business entity type consists of:

· BusinessEntityType class

· “+identification” property: unique identifier allowing other model elements to directly reference instances of this class

· “+name” property: name binding for this business entity type with respect to expressions referencing this business entity type

· “+description” property: text element to hold documentation

· Generalization association from the BusinessEntityType class to itself

· “+semanticParent” role: a business entity type inherits, or has the same business semantic as its semantic parent.

· Realization association from BusinessEntity class to BusinessEntityType class

· A business entity is a realization of a business entity type, and can be said to have the properties of its type. The BusinessEntity objects represent real-world entity instances as described in the Business Requirements View of the UN/CEFACT Modeling Methodology[editor: add reference].

· Association from BusinessEntityType class to Namespace class

· A business entity type name is unique within a namespace, which is unique within an organization

· Composition associations from BusinessEntityType class to BusinessEntityIdentity, BusinessEntitySemantic, BusinessEntityContent, and BusinessEntityLifecycle classes

· A business entity type is composed of these elements, that is these elements are properties of the type.

2.3 BET Binding

The expression of an information model SHOULD include high level business semantic, reusable information structures, document construction, and service binding. This requires that the business semantic bind to its expression in the information model and to the method of access to its content through business services.

The Business Entity expression includes the ability to imbed and link to document elements in standard document structures (e.g. OAG, EDIFACT). This is critical to the enablement of both canonical mapping, and evaluation of differences between implementations of the canonical elements in the information structure.

The Business Entity expression includes the ability to identify and constrain access to its business entity instances through business services interfaces. This binding MUST be able to prescribe consistent results (consistent backend object access) implemented by both semantic and direct mapping methods.

Semantic elements such as “object-in-state” or “object-is-a” MUST resolve to TRUE / FALSE through evaluation of mapped information elements accessed through standard business service interfaces; or through recursive evaluation of other compositional semantic elements.

While there is an expectation that these bindings be bi-directional this specification will implement binding only from business entities to information model and business service.

(Note: Since the BPSS already allows you to point to the "document schema", there is no reason a schema shouldn't include semantic, structure, and instance binding as well as document structure. Since the conditionals point at elements of the document schema, it could also point at semantic elements like state. This allows BET specifications to be used in BPSS specifications as a document-plus-semantic-information-model).

2.4 BET Identity Expression

The objective of any expression of BET identity is to provide information element bindings capable of uniquely identifying a business entity instance. This is not technical identification such as URI, but business identification such as Container Number or Invoice Number. Some business entities can be reused where business instance identity includes both the entity identifier and the use identifier, such as Container Number plus Voyage Number. Some business entities change over time where business instance identity includes both entity identifier and version identifier, such as Order Number plus Revision Number.

2.4.1 BET Identity Model Expression

The model elements providing expression of business entity identification consists of:

· BusinessEntityIdentity class

· “+identityConstraint” property: expression of well-formedness constraints leading to proper identification of BusinessEntity instances

· Aggregative associations from the BusinessEntityIdentity class to the BusinessEntityContent class

· “+instanceIdentification” role: the combination of instanceIdentification information elements results in a unique business entity

· “+versionIdentification” role: unique value in a versionIdentification information element results in a unique expression of the business entity

2.4.2 BET Identity Binding to Business Information Entities

Execution of business collaborations and commitments requires that proper back end business objects are accessed at runtime. Proper binding of business entity identity to the information structure representing the identity is crucial. Business entity identity binds to business information objects through the “+implementation” association.

2.4.3 BET Identity Binding to Business Services

The business entity identity elements bind to business services that return URI-type references given business entity identifiers. This binding is critical to construction of collaborative commitments. The fulfillment condition expressions of a business commitment reference target states of business entities, requiring that the execution of a commitment MUST be able to bind to the actual business object representations through interface with business services.

Evaluation of an effective business entity model SHOULD include evaluation of proper identification of business entity instances at design time, execution time, and fulfillment verification time. This requires that all parties agree that the identification binding will result in access to the correct business entity instance.

2.5 BET Business Semantic Expression

The objective of any expression of BET semantic is to provide information bindings that define and align the business objective and business use of a class of business entity. The identification of semantic information elements provide a basis for a common expression to be used by entities with the same semantic. The semantic information elements express suitability for a particular business purpose. For instance, a business entity that is semantically a contract will have information elements identifying the parties to the contract and providing a definition of performance under the contract. These information elements may have vastly different names in the schematic expression
 while they bind to a consistent ontology in the business entity semantic expression.

2.5.1 BET Business Semantic Model Expression

The model elements providing expression of business entity semantic consists of:

· BusinessEntitySemantic class

· “+semanticConstraint” property: expression of well-formedness constraints leading to proper semantic representation of BusinessEntity instances

· Association from BusinessEntitySemantic class to EconomicElement class

· “+reaType” role: a business entity semantic has at its root semantic an element from REA ontology (see appendix E, REA Introduction)

· Composition association from the BusinessEntitySemantic class to the SemanticElement class

· “+identification” property: unique identifier allowing other model elements to directly reference instances of this class

· “+semanticName” property: name binding for this semantic element with respect to equivalent elements on parent entities or child entities

· “+description” property: text element to hold documentation

· “+constraint” property: expression of constraints leading to proper semantic representation of content

· Association from the SemanticElement class to the BusinessEntityContent class

· “+semanticContent” role: the mapping of the semantic element (e.g. “fulfillmentCondition”) to the content element (e.g. “paymentTerms”)

2.5.2 BET Business Semantic Binding to Business Information Entities

Backend business object implementations have their semantics captured in applications and optimized for the proprietary business model of the organization. The shared, canonical representations of the logical business entities generally have semantic elements which are not named the same, nor do they have identical semantic with the backend representations
. Successful alignment of semantic requires that these backend information structures be mapped to the shared canonical semantic. The binding of the shared business semantic elements to shared information entities provides the ability for partners to agree and test implementation against a specified semantic representation.

2.5.3 BET Business Semantic Binding to Business Services

The business entity semantic elements bind to business services to validate that elements exchanged through the business service have the proper business semantic. Proper fulfillment of business commitments requires that business objects offered as evidence of fulfillment have the proper business semantics.

2.6 BET Content Expression

The objective of any expression of BET content is to define the canonical entity construction and provide the hooks to map it to scenario or context specific expressions of that entity construction. The BET content expression allows all compositional elements of a business entity to be named, described, and constrained by well-formedness rules. BET content is also associated with the identity, semantic, and state elements, thus giving an additional conceptual basis to each content element. Each content element is referenced by at least one of these identity, semantic, and state elements, providing the reason for the existence of that content element.

2.6.1 BET Content Model Expression

The model elements providing expression of business entity content consists of:

· BusinessEntityContent class

· “+name” property: name binding for this content element with respect to expressions referencing business entity content

· “+contentConstraint” property: expression of well-formedness constraints leading to proper content representation of BusinessEntity instances

· “+compositionDescription” property: text element to hold documentation of this content element’s role in composition of business entity

· Association from BusinessEntityContent class to BusinessInformationEntity class

· “+implementation” role: business entity content is implemented as a business information entity, which is then exchanged by a business document

· Composition association from BusinessEntityContent class to itself

· “+component” role: business entity content is often composed of content (e.g. a “DeliveryEvent” can contain both the timing of delivery as well as the location of delivery)

· Aggregation association from BusinessEntityContent class to BusinessEntityType class

· “+externalDefinition” role: A business entity is often a container for other business entities. In many of those instances the component business entity MAY be used in other contexts as well. In this case the definition of the component business entity is external to the containing business entity, and included by reference.

2.6.2 BET Content Binding to Business Information Entities

Business entity content is implemented as information bundles. The business entity content elements are mapped onto business information entity elements through the “implementation” relationship. [Bind to EDI]

2.6.3 BET Content Binding to Business Services

Business entity content is instantiated in both business document content and business information objects. A business document will contain information that represents the state of a business information object at the time of execution of a business service interface. The business entity identity restricts the business service to proper access to appropriate business information objects, and to proper population of business documents with correct business content.

2.7 BET Lifecycle Expression

The objective of any expression of BET lifecycle is to describe and prescribe behavior of a business entity of that business entity type. A business entity type MAY have multiple lifecycles differentiated by business context. The BET lifecycle is a statemachine that prescribes the possible states and transitions of a business entity. Transition from any one state within a lifecycle to another is a business event, which MAY be subscribed to within a conditional statement within a business collaboration, by that conditional statement referencing that business entity state.

2.7.1 BET Lifecycle Model Expression

The model elements providing expression of business entity lifecycle consists of:

· BusinessEntityLifecycle class

· “+identification” property: unique identifier allowing other model elements to directly reference instances of this class

· “+name” property: name binding for this semantic element

· “+description” property: text element to hold documentation

· “+lifecycleConstraint” property: expression of well-formedness constraints leading to proper application of a lifecycle in a scenario

· Association from BusinessEntityLifecycle class to Context class

· A business entity lifecycle is unique within a business context expression

· Composition associations from BusinessEntityLifecycle class to BusinessEntityState class

· A business entity type is composed of its state elements. This is a compositional relationship to allow content requirement as well as entry / exit conditions on a state to be unique within a lifecycle. The state names are not required to be unique, since the same state name MAY exist in more than one lifecycle. This means that the binding from a conditional expression in a business collaboration to a business entity state is either through explicit state identification (URI) or through the combination of name, and business context that identifies the lifecycle.

2.7.2 BET Lifecycle Binding to Business Information Entities

There is no direct binding from BET lifecycle to business information entities. Implementations of BET lifecycle may need to reference business information entities to compute context.

2.7.3 BET Lifecycle Binding to Business Services

Business service behavior is constrained by the prescribed behavior of the business information objects being acted upon by the service. The behavior of business information objects is prescribed by its business entity type lifecycle (statemachine).

2.8 BET State Expression

The objective of any expression of BET state is to provide a formal definition of an expected business result. This allows the business result to be referenced in conditional statements and metrics, and to be used to describe, monitor, and audit object and service behavior. The BET state expression has the ability to express computable compliance with state conditions, to express content requirements and availability, and to express state identity that is usable by dependent packages.

Business entity type states are used by business partners to identify and define objectives of business collaborations. For example the partnership agreement might call for payment upon delivery. The BET state “delivered” is used by the parties to define the conditions for acceptable delivery.

The content required to validate the “delivered” state must be exchanged between the parties to justify the requirement for payment. Thus the business entity state will supply contextual requirements for information content in the business documents.

2.8.1 BET State Model Expression

The model elements providing expression of business entity lifecycle consists of:

· BusinessEntityState class

· “+identification” property: unique identifier allowing other model elements to directly reference instances of this class

· “+name” property: name binding for this semantic element

· “+description” property: text element to hold documentation

· “+entryCondition” property: expression of conditions required for a business entity to enter the state, or expression of business result identified with this state

· “+exitCondition” property: expression of conditions required for a business entity to exit the state, normally used only for negative state where the positive business result is the departure from the state (e.g. enter “bad risk” state by making two late payments, leave “bad risk” state by making six on-time payments)

· aggregative associations from the BusinessEntityState class to the BusinessEntityContent class

· “+visibleContent” role: this association identifies business entity content that is visible when the business entity is in the state. A query of the business entity in this state would find these elements, not necessarily populated, but at least defined.

· “+requiredContent” role: this association identifies business entity content that is required when the business entity is in the state. A query of the business entity in this state would find these elements populated as well as defined.

2.8.2 BET State Binding to Business Information Entities

Business entity states are defined by conditions on business entity information content visible to the business entity. The business entity state binds to business information entities through the business entity content class to express information visibility and requirement, as well as to evaluate state entry and exit conditions. The information availability and requirement bindings are used to prescribe and evaluate document construction.

2.8.3 BET State Binding to Business Services

A business service provides access to business information objects by reporting their state, and acts upon business information objects by taking them from one state to another. Business service behavior is constrained by the prescribed states of the business information objects being acted upon by the service.

Business entity state names are not required to be unique, since the same state name MAY exist in more than one lifecycle. This means that the binding from a conditional expression in a business collaboration to a business entity state is either through explicit state identification (URI) or through the combination of name with the business context that identifies the lifecycle.

3 Business Entity Execution

The goal of the business entity type is to enable alignment of business semantic between business partners. The preceding sections have dealt with alignment of business entity class definition and alignment on the business semantic of the business entity type and its parts. This section deals with application of the business entity type during run-time to obtain partner alignment on the monitoring, management, and achievement of business results.

A business engagement involves the cooperation of business partners to achieve business results. A business engagement governed by an agreement involves the cooperation of business partners towards the achievement of expected, or agreed, business results. The ability to both define and measure these business results requires the ability to capture and map execution artifacts onto the definitions of business success. In complex demand chains the ability to optimize profitability is directly related to the ability to predict and prescribe performance at each node in the demand chain, as measured by business resource quantity and quality available to downstream nodes.

Business entities and business entity types address this problem by creating an executable model that sits between the partners proprietary models and above the interactions of enterprise applications, allowing the definition of expected business performance as well as the monitoring of actual business performance.

3.1 Business Entity Instance

The key to the effective use of business entity types in the execution of collaboration and business entity behavior is the ability to create a business entity instance. The business entity type is the definition of what is visible to both parties, both content and semantic. The business agreements are based on business information and semantic visible to both parties. Therefore any monitoring or enforcement of expected business results requires the ability to evaluate the state and content of a business entity instance.

A business entity instance has three representations: 1) as the real business object (e.g. the actual instance of product with serial number A123-45678, or the actual truck with license number W55683); 2) as the application representation of that object (e.g. the ERP representation of the same product instance in each parties backend business system); and 3) as the sum of exchanged representations of that object (e.g. the delivery notice for the same product instance, stating compliance with the order description). This third representation is the only representation consistently accessible to all of the parties. This section describes the rules by which the composite state of those messages can be prescribed at design time, and evaluated at runtime, using a virtual representation of the Business Entity Instance.

3.2 Construction of the Business Entity Instance

The business entity instance is constructed by application of production rules to the business entity type model, and populated by application of business documents to the business entity instance.

A business entity instance is materialized (has virtual existence) when a collaboration references a real world business entity, and the following information is available:

1) Business entity type

2) Well formed identity content

A business entity instance is created (locally) when a business decision requires a computation of business entity state, and the execution engine does not have the capability to evaluate the virtual instance.

A business entity instance is published when a set of business partners collaboratively monitor and manage the execution of a business collaboration that references business entity state.

3.2.1 Business Entity Instance Structure

[editors note: This should be formalized using a specific notation (possibly align notation with BPSS??), at this point I wanted just to get this proposal for structure in front of team members for feedback – next weeks version will have the final syntax (so get those comments in now!!!]

BusinessEntityInstance

· “identification”

· “name” [string = BusinessEntityType.name]

· “identificationContent”

· [1..n] “[contentName]” [string = value]

· “versionContent”

· [1..n] “[contentName]” [string = value]

· [0..n] “objectInstanceIdentifier” [URI]

· [0..n] “instanceLifecycle”

· “name” [string]

· “identification” [URI]

· “stamp”

· “model”

· “businessEntityType”

· “name” [string = BusinessEntityTypeModel.name]

· “reference” [URI reference]

· [0..1] “location” [URL reference]

· “instance”

· “content”

· “[hierarchy = BusinessEntityContent structure]” [string = content values]

· “lifecycle”

· [1..n] state

· “identification”

· “entryStamp”

· [0..1] “exitStamp”

· [0..1] “implementation”

· “[hierarchy = populated BusinessInformationEntity structure]” [string = content values]

· [0..n] “participantIn”

· “businessCollaboration” [URI reference]

· [1..n] “collaborationState” [string = stateName]

· [0..n] “constructedBy”

· “requestingBusinessAction” [URI reference]

· “document” [document instance]|[URL reference]

· “respondingBusinessAction” [URI reference]

· “document” [document instance]|[URL reference]

· “quality”

· “contentIsAligned” [TRUE|FALSE]

· “identityIsWellFormed” [TRUE|FALSE]

· “semanticIsWellFormed” [TRUE|FALSE]

· “contentIsWellFormed” [TRUE|FALSE]

· “lifecycleIsWellFormed” [TRUE|FALSE]

3.2.2 Business entity instance production rules

Production rules allow diverse implementers to create compatible business entity instance implementations in diverse technologies.

3.2.2.1 Required production rules

1) The root object hierarchy is created using the mandatory elements of the business entity content structure

2) The identification.name element is populated using the name property from the business entity type model

3) The model.name and model.reference elements are populated using the name and reference from the package containing the model

4) The instanceIdentification elements of the BET model are evaluated to construct the identifier.identificationContent structure

5) The content hierarchy of the BET model is evaluated to construct the instance.content structure

6) Business documents are applied (as prescribed in the immediately following section “Application of Business Documents to Business EntityInstance”) to populate contentName values and instance.content structure

7) If ANY request documents are applied that have not yet had positive response, then the quality.contentIsAligned element MUST be set to FALSE

8) The identityConstraint, semanticConstraints, and contentConstraint expressions are applied to the content representation hierarchy and their associated quality…IsWellFormed elements are set to TRUE or FALSE.

9) The lifecycleConstraint(s) are applied to the content representation hierarchy and the identity.instanceLifecycle elements are populated. If there is one lifecycle, it is populated. If the lifecycle is declared by the collaboration model, or collaboration protocol agreement then it is used, overriding the computed lifecycle, and its lifecycleConstraint is applied to the content representation hierarchy with resulting setting of the quality.lifecycleIsWellFormed element.

10) If component business entities exist, then the quality…IsWellFormed elements for any component business entity instances MUST all be TRUE for a the quality.IsWellFormed element on the aggregate business entity instance to be set to TRUE.

3.2.2.2 Optional production rules

1) Any URI of equivalent backend business objects contained in the business documents are used to populate the identification.InstanceIdentifier element(s)

2) If a specific business entity type model instance location is available it is used to populate the model.location element.

3) An implementation MAY construct and populate the instance.implementation hierarchy with node names equal to business information entity names. This may be required for compatibility with conditional statements in other ebXML artifacts, such as BPSS and CPP/CPA.

4) In a complex multi-party interaction, it may be necessary to restrict the collaborations and/or transactions applied to a business entity instance so that only those within a specific set of partners or business problem are applied. In those instances the instance.participantIn.businessCollaboration elements and their target states MAY be specified, and used to restrict the business documents being applied. It is up to the implementer to verify that the content and collaboration sections of the business entity instance have integrity. Of course that integrity can be easily verified by applying the listed transactions to obtain the content.

5) The business entity instance may be used to provide a set of partners with the current state of shared business entities. In this case all business collaborations impacting a business entity instance are applied, and the instance.participantIn.businessCollaboration elements are descriptive, and not used as a constraint on content construction.

6) As business documents are applied, their URIs MAY be recorded in the instance.constructedBy elements. This structure is expected to be useful in executing and monitoring of business collaboration instances.

3.3 Application of Business Document to Business Entity Instance

The source for business entity instance construction is the content of business documents exchanged between business partners in the execution of a business collaboration. These business documents form the basis for partner understanding of the state of business objects as well as the basis for partner decision making and partner fulfillment of commitments.

3.3.1 Business Document Application Production Rules

1) Business documents are only applied if they are visible to the parties to the agreement.

2) Business documents are applied in the order of their receipt acknowledgement stamps.

3) Content is populated through use of the Business Information Entity binding to business document content. The implementation of this binding is NOT prescribed by this specification, except for the addition of an (optional) documentElementMapping expression to the local Business Information Entity binding. This however is a problem that has been consistently solved through a large number of methods.

4) Business entity instance content is represented in string form. It is expected that any binary form will be converted to string before population of the instance.content elements. The instance.implementation elements MAY remain in their implementation format, which is not prescribed in this document, but may be prescribed by the Core Component specification (or companion specifications).

5) Content data typing is not prescribed by this specification. It is assumed that the logical operators in the expressions will drive content conversion from the native string representation to a compliant representation before applying the operation specified in the expression.

3.3.2 Business Information Entity binding

The population of instance.content elements from the business document content requires the ability to bind sections of the business document to components of the business entity. The business information entity (BIE) provides the mechanism for this binding by linking information structure and business role together in the aggregate business information entity (ABIE).

The business entity type specification calls for each BusinessEntityContent instance to reference its BIE implementation. Each Assembly Document (as described in the UN/CEFACT eBusiness Architecture (UEA) document [ref??]) binds the elements of the business document schema to its BIE. Thus an implementation that is compliant with the UEA has the necessary bindings to populate the appropriate BusinessEntityContent instance from the business document contents.

Alternatively, the business entity type specification calls for an additional property on the binding from BusinessEntityContent to BIE. This property: documentElementMapping, is an expression that returns the proper content from a document instance. PLEASE NOTE that use of this optional element binds that business entity type specification to a specific business document syntax.

3.4 Access to Business Entity Instance Content

Implementers of business entity instance will construct accessors that are suitable for use in business collaboration protocol execution. These implementations are not prescribed here. Two implementations are suggested: XML implementation and Object Oriented implementation

3.4.1 Access to XML Implementations of Business Entity Instance

An XML representation of a Business Entity instance could be created through application of XSLT to a document set, or application of a production script. The XML business entity instance representation could then be examined with a variety of XML related tools, such as XPATH.

3.4.2 Access to Object Oriented Implementations of Business Entity Instance

An object implementation of a business entity instance class SHOULD include the following methods:

· Constructor new array of BusinessEntityInstance (modelReference, document)

· boolean : BusinessEntityInstance.instate(state)

· XMLString : BusinesEntityInstance.getContent (contentName)

· String|URI : BusinessEntityInstance.getLifecycle ();

· void : BusinessEntityInstance.setLifecycle (string|URI);

· void : BusinessEntityInstance.applyDocument (document)

· void : BusinessEntityInstance.applyCollaboration (collaborationReference)

4 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

5 Contact Information

ebTWG Chair - Klaus-Dieter Naujok, knaujok@home.com

6 Project Team Membership

Project Team Leader – Paul Levine, plevine@telcordia.com
Project Editor – William McCarthy, mccarth4@msu.edu
Editing Team for this document

· John Yunker, john.yunker@bleuciel.org

· William McCarthy, mccarth4@msu.edu (REA definitions and business examples)

Project Team

· Bob Haugen, email address

· David Welsh, email address

· Jamie Clark, email address

· Nita Sharma, email address

· Jim Clark, email address

· Brian Hayes, email address

· Andy Cardy, email address

· Derek Coleman, email address

· Sue Probert, email address

· Kit Ko, email address

· Monica Martin, email address

7 Copyright Statement

Copyright © [ebXML | UN/CEFACT] 2001. All Rights Reserved.

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself SHALL NOT be modified in any way, such as by removing the copyright notice or references to [(ebXML, UN/CEFACT, or OASIS,) | UN/CEFACT,] except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by [ebXML | UN/CEFACT] or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and [ebXML | UN/CEFACT] DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

8 Appendixes

Appendix A – Example BET Models

Appendix B – Example BET Model XML Expressions

Appendix C – Example BET Model use in a business collaboration and commitment specification

Appendix D – Example BET Instance XML

Appendix E – REA (Resource-Event-Agent) Introduction

An ontology, according to the most generally accepted e-commerce definition of that word, is a “specification of a conceptualization.”
 The REA (Resource-Event-Agent) ontology is a specification of the declarative semantics involved in a business collaboration (or more generally in a business process). The theory behind REA comes from the field of microeconomics with specific ties in many instances to the use of economic definitions in the practice of building enterprise-wide information systems. In the BET specification, all of the REA ontology definitions are applied to the collaborative space between enterprises where market exchanges occur in closely synchronized fashion among two or more trading partners.

In its most simple form without a high degree of precision, REA can be portrayed as a UML class diagram with associations and generalizations relating the object classes. The intent of this appendix is to display REA simply and to explain its basic rationale. To do so, the appendix will use a set of three figures labeled E-1, E-2, and E-3. The most advanced of the figures (E-3) is a good overall guide to the BRV semantics given both here in the BET specification and in Chapter 8 of the UMM. This appendix will also list a series of archival publications that are freely available at the following website for readers who desire more detailed explanations.

http://www.msu.edu/~mccarth4/rea-ontology/index.htm
E-1 – The Basic REA Ontology

The Basic REA model was first published in the July 1982 issue of The Accounting Review
, the most prominent, most reliable, and most tightly controlled outlet for theoretical-based accounting work in the world. Its basic premises have withstood all challenges in the 20 years since, and its components are used extensively in a variety of educational, practical, and theoretical contexts.

Figure E-1 illustrates the basic class structure of REA ontology. The left-to-right configuration of economic Resources, economic Events, and economic Agents (renamed in UN/CEFACT BET and UMM work as “Partner”) in a typical business collaboration pattern is the source of the model’s REA name.

A successful business collaboration involves first and foremost two types of Economic Events, each of which details the Economic Resources involved in an exchange between two Trading Partners. For example, a Supplier (Trading Partner) transfers ownership of an Automobile (Economic Resource) to a Customer (Trading Partner) in return for which (duality association) the Customer will provide Money (Economic Resource) to the Supplier. There are two mirror-image instantiations of the object pattern shown in Figure E-1 where one transfer represents the legal or economic consideration given for the other.

The declarative semantics shown here are central to all trading relationships. Economic Resources are objects that have value and are under the control of one of the two collaborative agents. Trading partners always expect requited transfers of resources when they engage in commerce. Hence, Figure E-1 is a pattern for all economic exchanges.

8.1 E-2 – Adding Commitments to the Basic Exchange Ontology

In electronic commerce, the actual trading phase of an exchange is accommodated well by the object structure shown above in Figure E-1. However, trading partners in long-term relationships need more trusted and predictable structures where both parties contract for their exchange behavior in advance. The REA ontology accommodates this expansion with the addition of the classes shown as Economic Commitments, Economic Contract, and Agreement in Figure E-2.

A Commitment is a promise by a Trading Partner to initiate an Economic Event in the future. Performing the Economic Events fulfills that Commitment. Commitments should always be reciprocated by the other Trading Partner who commits to initiate another type of Economic Event in return. An Economic Contract is a bundle of reciprocating commitments between Trading Partners who bind themselves to one or more economic exchanges in the future. A contract is a subtype of the more general object class called Agreement, and Agreements can regulate other Agreements.

In the case of the automobile-for-money exchanges discussed in the prior section, Commitments would involve the Customer agreeing to accept delivery of an Automobile on a certain date in return for which he or she would be contractually obligated to making a series of Cash payments to the Supplier for that purchase.
In the bottom part of Figure E-2, two additional objects of the REA ontology are illustrated: Claims and Locations.

· Materialization of Claims is sometimes needed when Trading Partners insist on documentation of partially-completed exchanges (for example, when a Customer takes possession of an Automobile before paying for it in full). If needed, Claims can be instantiated by documents like invoices or by accounting artifacts like accounts-receivable. Their inclusionhere is more a matter of business custom than ontological completeness.

· A Location is another object that is sometimes needed to fill out the specification for a full economic transfer. Locations simply identify the place where Economic Events take place.

The economic and ontological foundations of commitments are explained more completely by Geerts and McCarthy.

8.2 E-3 – Adding Types to the Basic REA Exchange Ontology

The object pattern portrayed in Figure E-2 above is primarily descriptive in the sense that it illustrates what actually occurred in an economic exchange or what has been committed to. In the UMM and the BET specification, these descriptive components have been augmented by prescriptive components that allow the specification of control policies or collaboration patterns. These prescriptive components are enabled by the inclusion of type images of the basic descriptive objects
. The class diagram of Figure E-3 shows these additions.

The addition of Types to Figure E-3 proceeds in two stages:

· Four of the base descriptive classes – Economic Resource, Economic Event, Partner, and Location – have classes added for their types. These new classes are connected to the descriptive objects by typifies associations. An example of a Resource Type could be different models of automobiles. An example of Economic Event Type could be the classes of retail transaction and wholesale transactions, each with different pricing structures. An example of Partner Type could be different classes of employees, each type with separate training requirements. And finally, an example of Location Type might be different types of loading docks with different sizes and stress capability levels.

· The full design of the Economic Commitment would necessitate associations with between the commitment and each of the new type-level objects. These are illustrated in the figure with specifies associations.

In addition to these two groups of additions, there are other REA associations in the BET and the UMM that are not illustrated here in an effort to minimize diagram complexity. These include:

· Partner – participates – Economic Commitment

· Economic Commitment – destination – Location

· Partner -- participates – Agreement

· Partner – participates – Economic Commitment

· Economic Commitment – reserves – Economic Resource

And finally with regard to Figure E-3, the partial integration of the elements of the REA ontology with the components of the UMM business collaboration framework is illustrated by showing the class for Business Collaboration (with dotted lines) and some of its associations with REA classes (also illustrated with dotted lines). Outside of its use with the UMM and the BET specification, the REA ontology has a three-level architecture that is explained by Geerts and McCarthy
 In the UMM, this three-level architecture is effected by the integration of REA components within the business collaboration framework and by the connection of the Business Requirements View (BRV) to the to the Business Domain View (BDV) above it and the Business Transactions View (BTV) below it.

Appendix F – Fowler based specification syntax

ebTWG RDF implementation of the Fowler Specification Pattern

Conditional expression syntax currently does not allow use of externally defined elements. This makes it difficult to encapsulate complex conditions defining object state inside that object, except through execution of a method on that object itself. While the method method works well in programming languages, it does not work well in model or schema languages.

The following implementation of the Fowler Specification Pattern allows a specification to declare a condition of “object in state” as well as define the conditions that test that state.

Complex collaboration choreography requires the ability of participants to define and specialize these object states, so that business users can negotiate and specialize their definitions, and so that business services can access the business information object instances of these business objects to evaluate and report these states.

Specification requirements discussion:

1) Specification pattern MUST be able to identify objects through their relation to known root objects of a collaboration. For instance a shipment will have one or more packages of shipment content. The specification pattern MUST be able to specify constraints about characteristics of the packages, without being able to reference them explicitly. In XML Xpath is used for this type of reference, however the structure of the RDF SHOULD be implementation non-specific.

2) Constraints take many forms, although this can be generalized to “object” “relation” “value”, where the object is some characteristic of the subject of the constraint, the relation is the test to be performed, and the value is an expression with a result that can be compared using the relation to the object. Common relations are equality, inequality, bounds evaluation (greater, lessthan, within), set inclusion, and “in state” evaluation.

3) The “in state” is the easiest to implement, since the test asks the object “are you in this state” with either a true or false result. The “gotcha” is that in order for the object to evaluate its state to provide the answer, either the object MUST be hardcoded to evaluate its state, or it MUST compute some other specification (thus simply removing the problem one layer of abstraction).

4) There may be several related simple constraint expressions in a complex constraint expression within the same specification. A specification may reference other specifications.

The proposed structure for the specifications (SpecificationPatternOO.rdf) uses Fowlers Specification Pattern original structure and is a more pure Object Oriented implementation. The original structure of the Fowler Specification Pattern uses subclassing of the specification to determine type of test. This is effective for recursive calling of a single method signature to evaluate the specification (true/false) where the subclass knows how to compute itself.

An example of a object state condition expression using this syntax is on the following page, followed by the RDF definition of the syntax.

Example:

Shipment.ReadyToShip [object=shipment, state=ready to ship] is defined by the following:

…

 <BusinessEntityState>

 <name>ReadyToShip</name>

 <entryCondition>

 <expressionLanquage>FowlerSpecSyntax</expressionLanguage>

 <expression>

<ConjuctionSpecification>

<object>Shipment</object>

<component>

<InStateSpecification>

<object>Shipper</object>

<testValue>Authorized</testValue>

</InStateSpecification>

</component>

<component>

<InStateSpecification>

<object>Package</object>

<testValue>ClearedForExport</testValue>

</InStateSpecification>

</component>

</ConjunctionSpecification>

 </expression>

 </entryCondition>

 </BusinessEntityState>

Shipper.Authorized [object=shipper, state=authorized] is defined by the following

…

 <BusinessEntityState>

 <name>Authorized</name>

 <entryCondition>

 <expressionLanquage>FowlerSpecSyntax</expressionLanguage>

 <expression>

</ConjunctionSpecification>

<object> Shipper.contact.Party</object>

<component>

<MemberOfSpecification>

<object>”Collaboration.Originator.Role”</object>

<testValue>Party.AuthorizedRoles</testValue>

</MemberOfSpecification>

</component>

<component>

<LessThanSpecification>

<object>Shipper.Organization.expirationDate</object>

<testValue>#today<testValue>

</LessThanSpecification>

</component>

</ConjunctionSpecification>

 </expression>

 </entryCondition>

 </BusinessEntityState>

RDF description of specification syntax

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:umm="http://www.unece.org/TMWG/UMM/umm-schema#" xmlns:rulespec="http://www.collaborativedomain.com/reference/specification-schema#">

<!-- Note: this RDF schema is an example schema constructed to model the Fowler

 specification pattern, to demonstrate use of reference models and specifications -->

<rdfs:Class rdf:ID="Specification">

<rdfs:subClassOf rdf:resource="http://www.unece.org/TMWG/UMM/umm-schema#Constraint"/>

</rdfs:Class>

<rdfs:Class rdf:ID="CompositeSpecification">

<rdfs:subClassOf rdf:resource="#Specification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="LeafSpecification">

<rdfs:subClassOf rdf:resource="#Specification"/>

</rdfs:Class>

<rdfs:Property rdf:ID="definition">

<rdfs:comment>Definition of specification</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:domain rdf:resource="#LeafSpecification"/>

</rdfs:Property>

<rdfs:Property rdf:ID="object">

<rdfs:comment>Definition of specification</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:domain rdf:resource="#LeafSpecification"/>

</rdfs:Property>

<rdfs:Class rdf:ID="ConjunctionSpecification">

<rdfs:subClassOf rdf:resource="#CompositeSpecification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="DisjunctionSpecification">

<rdfs:subClassOf rdf:resource="#CompositeSpecification"/>

</rdfs:Class>

<rdfs:Property rdf:ID="component">

<rdfs:comment>All true</rdfs:comment>

<rdfs:range rdf:resource="#CompositeSpecification"/>

<rdfs:domain rdf:resource="#CompositeSpecification"/>

</rdfs:Property>

<rdfs:Class rdf:ID="ValueBoundSpecification">

<rdfs:subClassOf rdf:resource="#LeafSpecification"/>

</rdfs:Class>

<rdfs:Property rdf:ID="object">

<rdfs:comment>Subject of constraint elaboration</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>

<rdfs:domain rdf:resource="#ValueBoundSpecification"/>

</rdfs:Property>

<rdfs:Property rdf:ID="testValue">

<rdfs:comment>Constraint elaboration</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:domain rdf:resource="#ValueBoundSpecification"/>

</rdfs:Property>

<rdfs:Class rdf:ID="InStateSpecification">

<rdfs:subClassOf rdf:resource="#ValueBoundSpecification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="EqualSpecification">

<rdfs:subClassOf rdf:resource="#ValueBoundSpecification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="GreaterThanSpecification">

<rdfs:subClassOf rdf:resource="#ValueBoundSpecification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="LessThanSpecification">

<rdfs:subClassOf rdf:resource="#ValueBoundSpecification"/>

</rdfs:Class>

<rdfs:Class rdf:ID="MemberOfSpecification">

<rdfs:subClassOf rdf:resource="#ValueBoundSpecification"/>

</rdfs:Class>

</rdf:RDF>

resourceflow

Economic Commitment

Economic Contract

Partner

Economic Resource

Economic Event

regulate

Figure E-2: REA Ontology with Commitments

site

Agreement

duality

Location

establish

fulfills

reciprocal

settles

to

Economic Claim

from

materializes

Economic Commitment

Economic Contract

Economic Claim

to

from

site

resourceflow

Partner

Economic Resource

Economic Event

Figure E-1: Basic REA Ontology

to

from

duality

resourceflow

Partner (Agent)

Economic Resource

Economic Event

Figure � SEQ Figure * ARABIC �10�: Business Entity Type Meta-Model

Figure � SEQ Figure * ARABIC �5�: Business Entity Type Package Dependencies

Figure � SEQ Figure * ARABIC �4�: Business Entity Type relationship to UMM

Figure � SEQ Figure * ARABIC �3�: Core Components Dependencies

Figure � SEQ Figure * ARABIC �2�: Business Collaboration Dependencies

Figure � SEQ Figure * ARABIC �1�: Business Entity Type Composition

Figure � SEQ Figure * ARABIC �7�: Business Entity Type Semantic Example

Figure � SEQ Figure * ARABIC �6�: Business Entity Type Package Composition

Figure � SEQ Figure * ARABIC �8�: Business Entity State Shipment Example

materializes

settles

fulfills

establish

Location

duality

Agreement

Economic Resource Type

Location Type

typifies

typifies

specifies

specifies

Economic Event Type

Partner Type

specifies

specifies

typifies

typifies

Business Collaboration

role

forms

governs

Figure E-3: REA Ontology with Types

regulate

reciprocal

results in

� Thomas Gruber (1993) “A Translation Approach to Portable Ontologies,” Knowledge Acquisition, pp. 199-220

� William E. McCarthy (1982.) “The REA Accounting Model: A Generalized Framework for Accounting Systems in A Shared Data Environment.” The Accounting Review (July), pp. 554-578

� G. Geerts and W.E. McCarthy (1999). “An Accounting Object Infrastructure For Knowledge-Based Enterprise Models.” IEEE Intelligent Systems & Their Applications (July August 1999), pp. 89-94

� G. Geerts and W.E. McCarthy (2000) “The Ontological Foundation of REA Enterprise Information Systems, “ paper presented to the Annual Meeting of The American Accounting Association, August 2000.

� G. Geerts and W.E. McCarthy (2002) “An Ontological Analysis of the Primitives of the Extended-REA Enterprise Information Architecture,” The International Journal of Accounting Information Systems (Vol. 3), pp. 1-16.

� G. Geerts and W.E. McCarthy (2001).“Using Object Templates from the REA Accounting Model to Engineer Business Processes and Tasks,” The Review of Business Information Systems, vol. 5, no. 4, pp. 89-108.

�PAGE \# "'Page: '#'�'" �Page: 4���7/16 define terms through glossary reference and/or annotation

�PAGE \# "'Page: '#'�'" �Page: 5���7/16 Kit/Jim discussion on role of OCL…

�PAGE \# "'Page: '#'�'" �Page: 5���<Bill M>(are words like normalization and lexicon going to baffle readers at this early stage ??

�PAGE \# "'Page: '#'�'" �Page: 5���<Bill M> (seems out of place. Why not specify all… <John Y response: these would normally not be thought of as business objects, yet we must be able to constrain their state and express policy etc>

�PAGE \# "'Page: '#'�'" �Page: 7���<Bill M>(elaborate and spell out)

�PAGE \# "'Page: '#'�'" �Page: 7���<Bill M>(I love these. Any way to get them earlier in the document to hook readers ?)

�PAGE \# "'Page: '#'�'" �Page: 7���<John Y>Bill, I was hoping for a stronger “state”… Is there a stronger adjective (I didn’t think “posted” was appropriate) that shows the money has actually changed hands??? (Object = Invoice, State = Paid seems a little more powerful than Object = Payment, State = Accepted)

�PAGE \# "'Page: '#'�'" �Page: 8���<Bill M> Change to “collaboration semantic” <John Y> Strongly disagree… The business semantic is what we are clarifying. The collaboration semantic is already dealt with in the collaboration semantic (encapsulated in the collaboration specfication)

�PAGE \# "'Page: '#'�'" �Page: 9���<Bill M> (possible to elaborate on what this sentence means?) <John Y> This sentence expresses that BET model the common (normalized) portions of common (re-used) business entities.

�PAGE \# "'Page: '#'�'" �Page: 11���<Bill M> (??)

�PAGE \# "'Page: '#'�'" �Page: 11���<Bill M> (don’t understand what this means)

�PAGE \# "'Page: '#'�'" �Page: 15���<Bill M> (continual and persistent ?)

�PAGE \# "'Page: '#'�'" �Page: 17���<Bill M> (should I have known this differentiation already ? This idea of a “package” is unfamiliar. Do we need more explanation?

�PAGE \# "'Page: '#'�'" �Page: 19���<Bill M> (still unsure about plural) <John Y> A Business Entity has A semantic which is composed of semantics… So both plural and singular are appropriate. I try to use singular when I am focusing on alignment of business partners around A semantic

�PAGE \# "'Page: '#'�'" �Page: 24���<Bill M> Business sentence as opener is just great. Maybe include another for the same sentence with context example. For example, “Most generally, we pay for raw materials when the goods are received. For the automobile industry however, we pay when the materials are entered into a production run.”

�PAGE \# "'Page: '#'�'" �Page: 24���I changed “material” to “components” because it is primarily the components that are “pay when used”, while bulk items are generally “pay when moved from staging (vendor managed inventory) to factory (Bill please confirm)

�PAGE \# "'Page: '#'�'" �Page: 27���Moved to section 2

�PAGE \# "'Page: '#'�'" �Page: 27���Moved to BET Content Model Expressoin

�PAGE \# "'Page: '#'�'" �Page: 29���<Bill M> (this is true for token-type classification abstraction like Bill or Jane to Customer. It is slightly different for type-type abstraction like customer to customer-type. In the second example, having customer inherit attributes like “discount rate for this group” would cause redundancy in a database model. Am I misunderstanding how OO works here?

�PAGE \# "'Page: '#'�'" �Page: 31���<Bill M> (what does this phrase imply?) <John Y> This implies that the canonical expression we are building provides value as a place to bind technical and business terms.

�PAGE \# "'Page: '#'�'" �Page: 32���<Bill M> (does backend mean internal to that enterprise ?

Copyright (2002, UN/CEFACT. Use of this document or its content is subject to conditions. (See copyright notice in this document)

