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Abstract

The basic logic programming semantic concepts, query, solutions, solution forms, and the fundamental results such as
Herbrand theorems, are developed over any logical system, formalised as institution, by employing ‘institution-independent’
concepts of variable, substitution, quantifier, and atomic formulae. This sets semantical foundations for a uniform development
of logic programming over a large variety of computing science logics, allowing for a clean combination of logic programming
with other computing paradigms.
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1. Introduction is an increasing multitude of logics in use as insti-
tutions in algebraic specification and computing sci-
The theory of institutions [1] is a categorical ab- ence. Some of them, such as first order (in many vari-
stract model theory which formalises the intuitive no- ants), second order, higher order, Horn, type theoretic,
tion of logical system, including syntax, semantics, equational, modal (in many variants), infinitary logics,
and the satisfaction between them. Institutions becomeetc., are well known or at least familiar to the ordi-
a common tool in the study of algebraic specifica- nary logicians, while others such as behavioural [6-8]
tion theory and can be considered its most fundamen- or rewriting logics [9] are known and used mostly in
tal mathematical structure. It is already an algebraic computing science. The original goal of institutions is
SpeCification tradition to have an institution Underlying to do as much Computing science and model theory as
each language or system, in which all Ianguage/systempossime, independently of what the underlying logic
constructs and features can be rigorously explained may be [1]. This paradigm is often called ‘institution-
as mathematical entities. This has been first spelt OUtindependent’ computing science or model theory.
as a programme with a sample definition of specifi- The logic programming paradigm [10] in its purely
cation language constructs in [2]. Most modern alge- |45ical form can be described as follows: “Given a
bralt_: specification languages follow this tradition, in- universal Horn (finite) presentations, E) (called
cluding CASL [3], Maude [4], or CafeOBJ [5]. There ‘program’, with X' the ‘signature’ of the program, i.e.,

the set of its symbols, an# the set ofX-sentences)
E-mail addressrazvan.diaconescu@imar.ro. and an existentially quantified conjunction of atoms
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(called ‘query’) inX> U Y (for Y a new set of ‘logical
variables’), find a ‘solution for p, i.e., values for
the variables’, such that the corresponding instance
¥[p] of p is satisfied by ¥, E).” In other words, we
need that X, E) = (3Y)p.

In the most conventional form, logic programming
is considered over unsorted first order logic without
equality [10], less conventional forms of logic pro-
gramming extends this to multiple sorts, or even con-
siders first order logic with equality as underlying
logic [11-13], this being considered as a new related
paradigm, and known under the name of ‘equational
logic programming’. An extension object-oriented ex-

tension of equational logic programming has been pro-

posed in [14]. However, a careful look at the logic pro-
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erally uses the same notations and terminology as Mac
Lane [17], except that composition is denoted by ;"
and written in the diagrammatic order. The applica-
tion of functions (functors) to arguments may be writ-
ten either normally using parentheses, or else in dia-
grammatic order without parentheses, or, more rarely,
by using sub-scripts or super-scripts. The category of
sets is denoted a&et, and the category of categofies
as Cat. The opposite of a categofy is denoted by
C°P. The class of objects of a categdtyis denoted

by |C|; also the set of arrows iff having the object

a as source and the obje&tas target is denoted as
C(a, b). An objecta is projectivewith respect to an
arrow h :b — ¢ when for each arrow :a — ¢ there
exists an arrow such thafg;» = f. Given a category

gramming paradigm shows its semantical foundations C and an object € |C|, thecomma category /C has

are essentially institution-independent.
The basic logic programming concepts, query, So-
lutions, solution forms, and the fundamental results,

arrowsf :a — b as objects anél € C(b, b’) such that
fih=flasarrowsh:(f:a— b)— (f :a— D).

such as Herbrand theorems, can be developed over anyhgfinjtion 1. An institution (Sign, Sen, Mod, =) con-

institution by employing institution-independent con-
cepts of variable, substitution, quantifiers, atomic for-
mulae, most of them being part of the ‘internal log-
ic’ of institutions developed in [15]. The institution-
independent concept of substitution is developed for
the first time here, being one of the main contributions
of this paper.

Our work sets foundations for an uniform de-
velopment of logic programming over a large vari-
ety of computing science logics, which opens the
door for a clean combination between logic program-
ming and various other computing paradigms. In this
‘institution-independent’ framework we also discuss
some basic modularisation issues for logic program-
ming.

Other applications of institutions to logic program-
ming include [16], but in a completely different way
than our use of institutions.

2. Institutions

sists of

1. a categonbign, whose objects are callaigna-

tures

a functorSen: Sign — Set, giving for each sig-

nature a set whose elements are cafledtences

over that signature,

. a functomMod: Sign°P — Cat giving for each sig-
natureX a category whose objects are callEd
models and whose arrows are called-(mode)
homomorphismsand

. a relationk=y C |Mod(X)| x Sen(X) for each
X € |Sign|, called X' -satisfaction

2.

such that for each morphisg: ¥ — X’ in Sign, the
satisfaction condition

M’ =5 Sen(p)(e)

holds for eachM’ € [Mod(X")| ande € Sen(X). We
may denote the reduct functdlod(g) by _[, and the
sentence translatioBen(¢) simply by ¢(_). When

iff  Mod(p)(M) Ex e

Institutions represent a mathematical meta-theory ¥ = M'[, we will say thatM” is anexpansion of

on logics, technically based on category theory, which
abstracts the Tarskian concept of truth, and which
builds on the idea of the invariance of truth with re-

spect to translation of notation. Hence this work as-
sumes some familiarity with category theory, and gen-

alongg.

1 We steer clear of any foundational problem related to the
“category of all categories”; several solutions can be found in the
literature; see, for example, [17].
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Any carefully defined logic or model theory can be
presented as an institution.

Example 1. Let FOL be the institution ofmany
sorted first order logic with equalitylts signatures

(S, F, P) consist of a set of sort symbols a setF

of function symbols, and a sét of relation symbols.
Each function or relation symbol comes with a string
of argument sorts, calledrity, and for functions
symbols, a result sort. Signature morphisms map the
three components in a compatible way. Modélsare

first order structures interpreting each sort symbol
as a seiy, each function symbat as a functionV/,,

from the product of the interpretations of the argument
sorts to the interpretation of the result sort, and each
relation symbolr as a subseM, of the product of

the interpretations of the argument sorts. Notice that
each termr of (S, F, P) can be interpreted in any
model M as one of its elements, denotéf}. If r =
o(ty, ..., ty) thenM; is defined add, (M;,, ..., My,).
Sentences are the usual first order sentences built
from equational and relational atoms by iterative
application of logical connectives and quantifiers.
Sentence translations rename the sorts, function, and
relation symbols. For each signature morphignthe
reductM’[, of a modelM’ is defined by(M'[,), =
M;(x) for eachx sort, function, or relation symbol
from the domain signature @f. The satisfaction of
sentences by models is the usual Tarskian satisfaction
defined inductively on the structure of the sentences.

Example 2. The institutionEQL of equational logic
can be obtained by eliminating from the institution
FOL of first order logic with equality the relation sym-
bols and their interpretations, and by allowing only
universally quantified equations (either in conditional
or unconditional form) as sentences. The signatures
of EQL are calledalgebraic signaturesand theEQL
models are calledlgebras

Definition 2. Let X' be a signature in an institution
(Sign, Sen, Mod, =). For each set of'-sentenceg’,
let E* ={M € Mod(X) | M =5 e for eache € E}.

Two sentences ande’ of the same signature are
semantically equivalerftienoted ag = ¢’) if they are
satisfied by the same class of models, {&* = {¢'}*.

For any signatureX, the satisfaction relation be-
tween X'-models and¥-sentences can be extended to
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a semantic consequence relation between sefs-of
sentences, i.eE =5 E’ when each model satisfying
E satisfiesE’ too.

Definition 3. A pair (X, E) is a presentationin an
institution whenX is a signature and is a set of
X-sentences. A presentation morphigm(X, E) —

(X', E’) is any signature morphism: ¥ — X’ such
thatE’' = @(E).

The work [15] shows how logical connectives,
quantifiers, and atomic formulae can be developed in-
ternally to any institution. The case of logical connec-
tives is straightforward (and not needed here), hence
we concentrate only on the last two.

In the actual institutions, the ‘basic’ sentences are
the simplest sentences matching the structure of the
models of the institution, i.e., which are preserved by
the model homomorphisms, and they usually consti-
tute the bricks from which the complex sentences are
constructed by using logical connectives and quantifi-
cation. Notice that the satisfaction of basic sentences
is a particular case of ‘injectivity’ satisfaction in the
sense of [18].

Definition 4. Given a signatureX’ in any institution,
a XY-sentence is basicif there exists a¥’-model M,
such that for eaclr’-modelM, M =5 e if and only if
there exists a model homomorphigdfy — M.

Example 3. In the case of first order logiEOL, the
ground atoms are basic. Recall that a ground atom is
either an equality between ground terms or a relation
(predicate) with ground terms as arguments.

If we consider a ground equatiofv@):r = ¢’ for
an algebraic signaturéS, F), then letTr/E be the
(quotient) initial (S, F)-algebra satisfyingv#)r =¢'.
In this caseF is the congruence generated by the pair
(t,1"). Then, an algebra satisfies(v@)r = ¢ if and
only if there exists a homomorphisfx /E — A.

If we consider a ground atomic relatiar(zy . . . t,,)
for a first order logic signatures, F, P), where
f,...,t; is a list of F-terms, then we consider the
(S, F, P)-model T such that as an algebr@, is the
initial term (S, F)-algebraTr, and which interprets
all relation symbols as the empty relation except
Ty ={(t1,...,ty)}. ThenM E=n(t1...t,) if and only
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if there exists a homomorphisfi — M, for each The cases whery: (S, F,P) — (§',F',P) is

(S, F, P)-model M. an arbitrary signature inclusion correspond to the
Notice that conjunctions of ground atoms are also second order quantification by the operatidris, F

basic. and predicates (relationg)’ \ P whenS = §’, and

extends also to sort quantification whehc .
In other actual institutions basic sentences can be ‘Weak’ second order quantification only ovénite
easily identified as (possibly conjunctions) of ‘atoms’ subsets of the models can be obtained by enriching
too, see [15] for rewriting logic, partial algebra, or the signatures with (1-ary) symbols denoting finite

behavioural logics. subsets of models, and consequently the models have
to interpret them accordingly.

Definition 5. Given a signature morphism: X~ — Quantifications higher than second order can be

X', a X-sentencéVy)p is universaly -quantification modelled by Definition 5 provided that the classical

of the X’-sentencep if and only if for each X- concept of first order logic signature is extended in

modelM order to accommodate symbols denoting higher order

structures.
MEx (Vy)p ifandonly if
(M’ (=5 p for all £’-modelsM’ with M’} , = M). In the actual institutions, due to its good properties,
the restriction of quantification to first order plays
an important role. The categorical definition below
of signature morphisms corresponding to first order
guantification has been introduced in [15]:

Existential quantificatioridy ) can be defined simi-
larly by replacing ‘all’ by ‘some’ in the definition of
the universal quantification.

This very abstract and general concept of quantifi-
cation, introduced first time by [19], for example, in Definition 6. In any institution, a signature morphism
the particular case of classical model theory includes x : ¥ — X' is representabléf and only if there exists
the second order quantification. Notice that this inter- @ Z-modelM, (called therepresentation of) and an
nalisation of the quantification does not use the or- isomorphismi, of categories such that the following
dinary concepts of open formulae and valuations (of diagram commutes:
unbounded variables), but rather considers the “vari- .
ables” as part of the signature and treats the “valua- Mod(X") L>(MX/M0d(2))

tions” as model expansions along the signature exten- forgetful
sion defined by the addition of the “variables” to the Mod(x) orgett
signature. This is exactly what happens in applications Mod(X)

because each valuation of variables into a model can

be regarded as an expansion of the model to the signa-gyampje 5, In the institutionFOL of first-order logic
ture extended with the variables. Otherwise said, for ¢5cn extension of signatures (S, F, P) = (S, F U
quantification we need only to mark a part of the sig- X, P) only adding constantX to F is representable

nature over which the quantification is done. Although by Tr(X), the free(S, F, P)-model over the added
this way of thinking about variables and quantification .o stantsy. T

is well known in conventional mathematical logic [20,
21] itis quite rare in the usual presentations of classi-

cal logic. Similarly, first order variables in other actual in-

stitutions correspond to representable signature mor-

Example 4. Given a signature(S, F, P) in many phisms [15]

sorted first order logid=OL, the ordinary first order

guantification by a seX of variables is the same with ~ Definition 7. A signature morphisny : ¥ — X’ is
the x-quantification, wherey : (S, F, P) < (S, F U conservativef and only if eachX-model admits at

X, P). least one expansion along
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Example 6. In conventional first order model theory,
a signature morphism : (S, F, P) — (§', F', P') is
conservative whem is injective on the sort, function,
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model homomorphisnd/, — N, and by composing
with i;l(g) there exists a model homomorphism
M, — M’,which means tha¥’ = p. This shows that

and relation symbols and does not add new operationsM = (Ix)p. O

of sorts in § that are ‘empty’ (i.e., withoutF-
terms). Consequently, ifS, F, P) has only ‘non-

Each expansionM’ of Ox g along x such that

empty’ sorts, then each injective signature morphism M’ |= p is called asolutionfor the query(3x)p. The

x:(S,F, P)— (S, F', P) is conservative.

3. Logic programming over arbitrary institutions

Definition 8. Given a signatureX in an arbitrary
institution, a X'-queryis any existentially quantified
X-sentencé3y)p such thaty is representable and
is a basic sentence.

importance of Theorem 1 is that is reduces the search
space for solution of queries froall models to only
one model.

Various well known actual Herbrand theorems can
be obtained as special cases of this result by varying
the underlying institution. For the case of pure Prolog
[10] we take unsorted first order logigithout equal-
ity, for Eglog [12] we take [13] many sorted first or-
der logic with equality, for behavioural logic program-
ming [14] we take hidden algebra, for constraint logic

Herbrand theorem reduces the problem of checking Programming we take constraint logic [23]. Herbrand

the satisfaction of a query by a presentation from all
possible models to the initial model only. It relies on
the existence of an initial model for the presentation
(program), known under the name of ‘Herbrand uni-
verse’ [10] by the classical logic programming com-
munity. This initiality requirement determines the re-
striction of logic programming to universal Horn the-
ories, a well known fact in classical logic, and which
has been proved for the first time in an institution-

independent setting in [22,19]. This is consistent to the

fact that in the actual institutions, the universal Horn

theorem for category-based equational logic can be
obtained by considering the institution of category-
based equational logic [24,25]. Denotational founda-
tions for new combinations between logic program-
ming and other computing paradigms can be obtained
by considering rewriting logic [9], membership logic
[26], multialgebra [27], etc.

Substitutions and solution forms

In the following we will develop the Herbrand the-

algorithms for automatic execution of logic program-
ming.

Theorem 1. In an arbitrary institution consider a
presentation( X, E) which has an initial modedy .
Then for each queri@@y)p

EE@x)p ifandonlyif Ox gk 3x)p.
Proof. Let x: X — X’. Assume that 8 r = (3x)p
and consider &-model M such thatM = E. There
exists an expansiotN of Ox g such thatN E p.
Becausey is representable lef =i, (N): M, —
Ox g. Let g:05 g — M be the uniqueX-model
homomorphism by the fact thaf = E. Let M’ =
i 1(f:9).

Then M’ is an expansion ofM along x and
i;l(g):N — M'’'. Becausep is basic, there exists a

tion of (existential) queries to universally quantified

‘atoms’. In the actual situations this opens the door for
developing refutation-based algorithms for logic pro-
gramming execution.

Given aFOL signature(S, F, P) and two sets of
variablesX and Y, a substitutionyr from X to Y,
denotedy : X — Y, consists of a mapping of the
variablesX with F-terms overy (i.e.,v: X — Tr(Y)
as function).

For any substitutiony,: X — Y (i.e., function
v X — Tr(Y)) any interpretationM» of variables
Y into an (S, F, P)-model M determines an inter-
pretation M4 (M>) of the variablesX into M by
YMod(Mp), = (M2)y () for eachx € X. On the other
hand, eacl{S, F U X, P)-sentencep can beinstanti-
atedby y to an(S, FUY, P)-sentences"(p) by re-
placing eachx € X with the termy(x). This phenom-
enon has the same flavour with sentence and model



34

R. Diaconescu / Information Processing Letters 90 (2004) 29-37

translations along signature morphisms, and we can Definition 10. An institution hasrepresentable sub-

notice easily that

My =y (p) ifandonlyif ¢Md(My) k= p.

This remark is the key to the institution-independent
concept of substitution.

Definition 9. In any institution, aubstitutiorny : 1 —
x2 from x1: X — X110 x2: X — X> signature mor-
phisms is a paitySe", yM°d) consisting of a sentence
translationySe" : Sen(X1) — Sen(X>») and a model
translatiomy™°9 : Mod(X») — Mod(X1) both of them
“preserving”X, i.e., the diagrams below commute:

1//Sen
Sen(X1) Sen(X2)
‘QM %(XZ)
Sen(X)
.‘/fMOd
Mod(X1) Mod(X>)
Mod(X)

and such that the following satisfaction condition
holds:

YyM(My) k= py ifandonly if  Ma = ¢S (py)
for eachX>-modelM> and each¥1-sentence;.

Our institution-independent concept of substitution

accommodates also second order substitutions (which
replace function symbols with terms) and even higher

order substitutions in the case of institutions of higher-
order logics.

Remark 1. Assumey1 and x» are representable. For
any substitution) : x1 — x2, there exists a&'-model
homomorphismMy, : M,, — M,, such that, for any
X»>-modelM>,

YN (M) =i H(My iy, (M2).

In the actual example of first-order substitutions
¥ : X — Y in first-order logic,My : Tr(X) — Tr(Y)
is the unique extension ofy: X — Tr(Y) to an
(S, F, P)-model homomorphism. Moreovergach
first-order substitution is thus determined by a model
homomorphism between representations.

stitutionswhen for all representable signature mor-
phismsy;: X — X1 and x2: X — X> each model
homomorphismi : M,, — M,, determines a substi-
tution v, : x1 — x2 such thaty'°(Mz) = i (h;
iy,(Mp)) for eachX>-modelMo.

By the satisfaction condition for substitutions, we
notice easily that); is unique modulosubstitution
equivalencei.e., for any substitutionsy;, and v,
determined byh, ¢ = y/M°% and ySe"(p) =
¥'3"(p) for eachX;-sentence.

The Herbrand theorem below can be interpreted in
the various institutions which constitute application
domains for Herbrand Theorem 1 and which have been
discussed above.

Theorem 2. Consider an institution with representable
substitutions such that

1. for each presentationnX, E) with initial model,
its signatureX’ has an initial mode0y,

2. for each representable signature morphism
X — X' the representationM, is projective
with respect to all ‘quotient’ homomorphisms
px.E:Ox — Ox g for any presentation ¥, E)
having an initial mode0yx .

Then for each presentatiof¥”, E) having an initial
model, and for any querga 1) o

E E @3xvp ifandonlyif
there exists a substitutiop : x; — x2 such that
E = (Vx2)¥ 58" (p) and x2 is conservative

Proof. AssumeE = (3x1)p and lety1: ¥ — X1. By
Herbrand Theorem 1, we have that @ = (3x1)p.
Let M1 be the expansion of £ along x1 such
that M1 = p and leth = i,,(M1):M,, — Ox .
By the projectivity property ofM,,, there exists
ho: My, — Ox such thatio; ps g = h. We show that
E E (Vlg)w,f’(f”(p) (notice also that % is trivially
conservative), whergy,, is a substitutiony; — 1x
determined byio.
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05 — 2L 05 p— 1 M 4. Modularisation
\ hT \ T“
ho 8y Now we introduce a couple of concepts playing
My, WMP P an important role in th study of structured software

specifications or programming modules.
Let M be a modelsuchthdf = F andletf :0x g —
M be the uniqug X, E)-model homomorphism. Be-
causei 1(h) = M1 |= p there existg : M, — i 1(h)
= Mi and we have that,, (M,);g[,, = h. Letu =
glyys f- We haveh; f =iy, (M,);u, hence there ex-
ists a model homomorphismM, — i t(h; f). It

Definition 11. A signature morphismp: X — X’
is liberal if and only if the reduct functor [,:
Mod(X’) — Mod(X) has a left-adjoint, denoted )¥.

_ M——>(M?)], M?
therefore follows that  }(i; f) = p, which means
that i)?ll(hmPE,E;f) = p which means thai;f(ho; h ', there exists a unique’
i1, (M)) = p. By the definition ofw,TOOd(M) this im- M, M

plies thatxp}':"o"d(M) = p. By the satisfaction condi-

tion for substitutions we therefore deduce tdt= In the actual institutions the liberality of signature

Sen

I/Ihri: (;O)th nverse. w me there exist b morphisms holds in general easily.
stitugon ;_CO _)e Se’sufhﬁsattjE; (: e);sesn;s f‘ su Exactness properties for institutions formalise the
Becausey .iXslcon)sctzervative we can fin)c(jza modl(()al.ho- possibility of amalgamating models of different signa-
momor hizsmu'M s 0s. We show thatMs — tures when they are consistent on some kind of ‘in-
LM Pu.p ') isxzan exgénsion of § alonéx_ tersection’ of the signatures (formalised as a pushout
i My u;ps E E 1 .
such thatM1 = p. square):

Let My = i;zl(u;pg,E). Because E = (Vx2)
¥Se"(p) and Mz|,, = Oz p, we have thatM, = pefinition 12. An institgtioorrl) is exactif and only if
¥Se"(p). Notice that My = i)?ll(Mx/ﬂixz(Mﬂ) _ Its model fgnct_on\{lod ..Slgn. — Cat preserves finite

limits. The institution issemi-exactf and only if Mod

Mod i i iti -
Y °%(Mz2). By the satisfaction condition for the sub preserves pullbacks.

stitution s this implies thatM; = p.
Therefore & g = (3x1)p. By Herbrand Theo-
rem 1 we now have thadl = (3x1)p. O Semi-exactness is everywhér®irtually all insti-
tutions formalising conventional or non-conventional

The substitutionsy of Herbrand Theorem 2 are logics are at least semi-exact. In general the institu-
called solution forms The proof of the ‘only if part  tions of many-sorted logics are exact, while those of
of this theorem shows that each solution for a query is unsorted (or one-sorted) logics are only semi-exact
an instance of a solution form for the query, while the [28]. However, in applications the important amalga-
proof of the ‘i’ part shows that each instance of any Mmation property is the semi-exactness rather than the
solution form for a query to the initial model gives a  full exactness.
solution for the query. The following amalgamation property is a direct

Notice that the supplementary conditions of Her- conseguence of semi-exactness:
brand Theorem 2 are very mild in the actual exam-
ples. For example, in first order logfOL , the second  pefinjtion 13. The commuting square of signature
condition is easily satisfied in the presence of an ax- morphisms
iom of choice because the representation models of
the representable signature morphisms are free over
the set of variables and the ‘quotient’ homomorphisms 2 at jeast in theweakform requiring only the existence but not
0y — Ox g are surjective. the uniqueness.
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ok

Xp—7r—>3'
)
is anamalgamation squaré and only if for eachX’;-
model M1 and a X>-model M2 such thatMa],,
Mz],,, there exists an uniquB’-model M’ such that
M’ [¢/1 = M1 andM’ rdé = M>. The modelM’ is called
theamalgamatiorof M, and M».

Corallary 1. In a semi-exact institution each pushout
square of signature morphisms is an amalgamation
square.

Logic programming modules can be abstracted

to presentations, and module imports to presentation

morphisms. Various other module compositions can

R. Diaconescu / Information Processing Letters 90 (2004) 29-37

Proposition 1. If M1 is a solution for the queryEy ) p,
thenM; is a solution for the query3x"p1(p).

Moreover, if the presentation morphismis con-
servative for initiality i.e., Ox/ g/ [(p =03 g, then for
each solutionV for (3x")¢1(p), there exists a solution
Mj for (3x)p such thatM; = N.

Proof. Let us assumeM; is a solution for(3yx)p.
Then by the definition of; we have that there ex-
ists a model homomorphis#/; — M, [, . Because
M1 = p we have that there exists a model homo-
morphismM, — Mi, which implies that there ex-
ists a model homomorphism, — M;[, . By the
universal property of the adjunction corresponding to
@1 we have that there exists a model homomorphism
My, (p) = My* — M, which shows thad/] k= ¢1(p).

For the second part, we assume tNais a solution
for 3x")¢a(p). We defineMy =i (1, siy (N) ).

be expressed as co-limits of presentation morphi:smsD

[28].

If we assume that the institution is semi-exact and
all signature morphisms are liberal, for any signature
morphismg : ¥ — X', we can translate an¥-query
(3x)p to the X/-query(3x’)p1(p) where

2*)()21

Lk

¥—%

is a pushout of signatures. Then it is rather easy
to show thatyp1(p) is basic (by the fact that liberal

The actual meaning of the first part of this propo-
sition is that each module import ‘preserves’ the solu-
tion of queries, while the meaning of the second part
is that the module imports which ‘protect’ the initial
model of the imported module also ‘protect’ the solu-
tion of queries.

5. Conclusions and futureresearch

We have developed denotational foundations for
logic programming independently of the details of the

signature morphisms translate basic sentences to basi¢/nderlying institution by employing internal institu-

sentences) and that' is representable (by defining
M, = MY), hence(3x)p1(p) is indeed a query.

On the other hand, for each presentation morphism
¢:(X,E) — (X', E), each expansiolM; of the
initial model Oy g is translated to the expansid;
of the initial model @ ¢/ such that the diagram below
commutes:

n
My —"" MY, MY
iy <M1>J/ iix/ M1, J/ix/ )
Oz, ——0x £ly 5%

where n is the unit of the adjunction between the
categories of models of and X’.

tion-independent concepts of variable, substitution,
quantification, and query.

At this level of generality we have proved the Her-
brand theorem in two versions, the second one reduc-
ing the existence of solutions for queries to existence
of solution forms. In the actual institutions this opens
the door for execution of logic programming by refu-
tation algorithms such as resolution, paramodulation,
etc.

We have also analysed modularisation issues such
as preservation and protection of solutions for queries
along presentation morphisms.

The importance of this work resides in the fact
that it sets denotational foundations for a uniform de-
velopment of logic programming over a large variety



R. Diaconescu / Information Processing Letters 90 (2004) 29-37 37

of computing science logics. Moreover, by employ- (Eds.), Logic Programming: Functions, Relations and Equa-
ing concepts of mappings between institutions [29] we tions, Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 295-
plan to develop a theory about borrowing of various 363; an earlier version appears in: J. Logic Programming 1 (2)

aspects of the logic programming paradigm between (1984) 179-210.
P gic prog gp 9 [13] J. Goguen, J. Meseguer, Models and equality for logical pro-

logic programming languages or systems defined over gramming, in: H. Ehrig, G. Levi, R. Kowalski, U. Monta-
differentlogics. We also plan to extend this institution- nari (Eds.), Proceedings, 1987 TAPSOFT, in: Lecture Notes in
independent study from denotational to operational se- Computer Science, vol. 250, Springer, Berlin, 1987, pp. 1-22.
mantics of logic programming. [14] J. Goguen, G. Malcolm, T. Kemp, A hidden Herbrand theorem:
Combining the object, logic and functional paradigms, J. Logic
Algebraic Programming 51 (1) (2002) 1-41.
[15] R. Diaconescu, Institution-independent ultraproducts, Fund.
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