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Abstract

The basic logic programming semantic concepts, query, solutions, solution forms, and the fundamental results
Herbrand theorems, are developed over any logical system, formalised as institution, by employing ‘institution-indep
concepts of variable, substitution, quantifier, and atomic formulae. This sets semantical foundations for a uniform deve
of logic programming over a large variety of computing science logics, allowing for a clean combination of logic progra
with other computing paradigms.
 2004 Elsevier B.V. All rights reserved.
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The theory of institutions [1] is a categorical a
stract model theory which formalises the intuitive n
tion of logical system, including syntax, semanti
and the satisfaction between them. Institutions beco
a common tool in the study of algebraic specific
tion theory and can be considered its most fundam
tal mathematical structure. It is already an algebr
specification tradition to have an institution underlyi
each language or system, in which all language/sys
constructs and features can be rigorously explai
as mathematical entities. This has been first spelt
as a programme with a sample definition of spec
cation language constructs in [2]. Most modern al
braic specification languages follow this tradition,
cluding CASL [3], Maude [4], or CafeOBJ [5]. Ther
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ence. Some of them, such as first order (in many v
ants), second order, higher order, Horn, type theor
equational, modal (in many variants), infinitary logic
etc., are well known or at least familiar to the ord
nary logicians, while others such as behavioural [6
or rewriting logics [9] are known and used mostly
computing science. The original goal of institutions
to do as much computing science and model theor
possible, independently of what the underlying lo
may be [1]. This paradigm is often called ‘institutio
independent’ computing science or model theory.

The logic programming paradigm [10] in its pure
logical form can be described as follows: “Given
universal Horn (finite) presentation(Σ,E) (called
‘program’, withΣ the ‘signature’ of the program, i.e
the set of its symbols, andE the set ofΣ-sentences
and an existentially quantified conjunction of atomρ

.
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(called ‘query’) inΣ ∪ Y (for Y a new set of ‘logical
variables’), find a ‘solution’ψ for ρ, i.e., values for
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ψ[ρ] of ρ is satisfied by(Σ,E).” In other words, we
need that(Σ,E) |= (∃Y )ρ.

In the most conventional form, logic programmi
is considered over unsorted first order logic witho
equality [10], less conventional forms of logic pr
gramming extends this to multiple sorts, or even c
siders first order logic with equality as underlyin
logic [11–13], this being considered as a new rela
paradigm, and known under the name of ‘equatio
logic programming’. An extension object-oriented e
tension of equational logic programming has been p
posed in [14]. However, a careful look at the logic p
gramming paradigm shows its semantical foundati
are essentially institution-independent.

The basic logic programming concepts, query,
lutions, solution forms, and the fundamental resu
such as Herbrand theorems, can be developed ove
institution by employing institution-independent co
cepts of variable, substitution, quantifiers, atomic f
mulae, most of them being part of the ‘internal lo
ic’ of institutions developed in [15]. The institution
independent concept of substitution is developed
the first time here, being one of the main contributio
of this paper.

Our work sets foundations for an uniform d
velopment of logic programming over a large va
ety of computing science logics, which opens
door for a clean combination between logic progra
ming and various other computing paradigms. In t
‘institution-independent’ framework we also discu
some basic modularisation issues for logic progra
ming.

Other applications of institutions to logic program
ming include [16], but in a completely different wa
than our use of institutions.

2. Institutions

Institutions represent a mathematical meta-the
on logics, technically based on category theory, wh
abstracts the Tarskian concept of truth, and wh
builds on the idea of the invariance of truth with r
spect to translation of notation. Hence this work
sumes some familiarity with category theory, and g
y

and written in the diagrammatic order. The appli
tion of functions (functors) to arguments may be w
ten either normally using parentheses, or else in
grammatic order without parentheses, or, more rar
by using sub-scripts or super-scripts. The categor
sets is denoted asSet, and the category of categorie1

as Cat. The opposite of a categoryC is denoted by
Cop. The class of objects of a categoryC is denoted
by |C|; also the set of arrows inC having the objec
a as source and the objectb as target is denoted a
C(a, b). An objecta is projectivewith respect to an
arrowh :b→ c when for each arrowf :a → c there
exists an arrowg such thatg;h= f . Given a category
C and an objecta ∈ |C|, thecomma categorya/C has
arrowsf :a→ b as objects andh ∈ C(b, b′) such that
f ;h= f ′ as arrowsh : (f :a→ b)→ (f ′ :a→ b′).

Definition 1. An institution(Sign,Sen,Mod, |=) con-
sists of

1. a categorySign, whose objects are calledsigna-
tures,

2. a functorSen :Sign → Set, giving for each sig-
nature a set whose elements are calledsentences
over that signature,

3. a functorMod :Signop → Cat giving for each sig-
natureΣ a category whose objects are calledΣ-
models, and whose arrows are calledΣ-(model)
homomorphisms, and

4. a relation|=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each
Σ ∈ |Sign|, calledΣ-satisfaction,

such that for each morphismϕ :Σ →Σ ′ in Sign, the
satisfaction condition

M ′ |=Σ ′ Sen(ϕ)(e) iff Mod(ϕ)(M ′) |=Σ e
holds for eachM ′ ∈ |Mod(Σ ′)| ande ∈ Sen(Σ). We
may denote the reduct functorMod(ϕ) by _�ϕ and the
sentence translationSen(ϕ) simply by ϕ(_). When
M =M ′�ϕ we will say thatM ′ is anexpansion ofM
alongϕ.

1 We steer clear of any foundational problem related to
“category of all categories”; several solutions can be found in
literature; see, for example, [17].
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Any carefully defined logic or model theory can be
presented as an institution.
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Example 1. Let FOL be the institution ofmany
sorted first order logic with equality. Its signatures
(S,F,P ) consist of a set of sort symbolsS, a setF
of function symbols, and a setP of relation symbols.
Each function or relation symbol comes with a stri
of argument sorts, calledarity, and for functions
symbols, a result sort. Signature morphisms map
three components in a compatible way. ModelsM are
first order structures interpreting each sort symbos
as a setMs , each function symbolσ as a functionMσ
from the product of the interpretations of the argum
sorts to the interpretation of the result sort, and e
relation symbolπ as a subsetMπ of the product of
the interpretations of the argument sorts. Notice t
each termt of (S,F,P ) can be interpreted in an
modelM as one of its elements, denotedMt . If t =
σ(t1, . . . , tn) thenMt is defined asMσ(Mt1, . . . ,Mtn).
Sentences are the usual first order sentences
from equational and relational atoms by iterat
application of logical connectives and quantifie
Sentence translations rename the sorts, function,
relation symbols. For each signature morphismϕ, the
reductM ′�ϕ of a modelM ′ is defined by(M ′�ϕ)x =
M ′
ϕ(x) for eachx sort, function, or relation symbo

from the domain signature ofϕ. The satisfaction o
sentences by models is the usual Tarskian satisfac
defined inductively on the structure of the sentence

Example 2. The institutionEQL of equational logic
can be obtained by eliminating from the instituti
FOL of first order logic with equality the relation sym
bols and their interpretations, and by allowing on
universally quantified equations (either in condition
or unconditional form) as sentences. The signatu
of EQL are calledalgebraic signaturesand theEQL
models are calledalgebras.

Definition 2. Let Σ be a signature in an institutio
(Sign,Sen,Mod, |=). For each set ofΣ-sentencesE,
letE∗ = {M ∈ Mod(Σ) |M |=Σ e for eache ∈E}.

Two sentencese ande′ of the same signature a
semantically equivalent(denoted ase≡ e′) if they are
satisfied by the same class of models, i.e.,{e}∗ = {e′}∗.

For any signatureΣ , the satisfaction relation be
tweenΣ-models andΣ-sentences can be extended
E satisfiesE′ too.

Definition 3. A pair (Σ,E) is a presentationin an
institution whenΣ is a signature andE is a set of
Σ-sentences. A presentation morphismϕ : (Σ,E)→
(Σ ′,E′) is any signature morphismϕ :Σ →Σ ′ such
thatE′ |= ϕ(E).

The work [15] shows how logical connective
quantifiers, and atomic formulae can be developed
ternally to any institution. The case of logical conne
tives is straightforward (and not needed here), he
we concentrate only on the last two.

In the actual institutions, the ‘basic’ sentences
the simplest sentences matching the structure of
models of the institution, i.e., which are preserved
the model homomorphisms, and they usually con
tute the bricks from which the complex sentences
constructed by using logical connectives and quan
cation. Notice that the satisfaction of basic senten
is a particular case of ‘injectivity’ satisfaction in th
sense of [18].

Definition 4. Given a signatureΣ in any institution,
aΣ-sentencee is basicif there exists aΣ-modelMe
such that for eachΣ-modelM,M |=Σ e if and only if
there exists a model homomorphismMe →M.

Example 3. In the case of first order logicFOL, the
ground atoms are basic. Recall that a ground ato
either an equality between ground terms or a rela
(predicate) with ground terms as arguments.

If we consider a ground equation(∀∅)t = t ′ for
an algebraic signature(S,F ), then letTF/E be the
(quotient) initial(S,F )-algebra satisfying(∀∅)t = t ′.
In this caseE is the congruence generated by the p
(t, t ′). Then, an algebraA satisfies(∀∅)t = t ′ if and
only if there exists a homomorphismTF /E→A.

If we consider a ground atomic relationπ(t1 . . . tn)
for a first order logic signature(S,F,P ), where
t1, . . . , tn is a list of F -terms, then we consider th
(S,F,P )-modelT such that as an algebra,T is the
initial term (S,F )-algebraTF , and which interprets
all relation symbols as the empty relation exc
Tπ = {(t1, . . . , tn)}. ThenM |= π(t1 . . . tn) if and only
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if there exists a homomorphismT → M, for each
(S,F,P )-modelM.
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Notice that conjunctions of ground atoms are a
basic.

In other actual institutions basic sentences can
easily identified as (possibly conjunctions) of ‘atom
too, see [15] for rewriting logic, partial algebra,
behavioural logics.

Definition 5. Given a signature morphismχ :Σ →
Σ ′, aΣ-sentence(∀χ)ρ is universalχ -quantification
of the Σ ′-sentenceρ if and only if for eachΣ-
modelM

M |=Σ (∀χ)ρ if and only if
(
M ′ |=Σ ′ ρ for all Σ ′-modelsM ′ withM ′�χ =M)

.

Existential quantification(∃χ)ρ can be defined simi
larly by replacing ‘all’ by ‘some’ in the definition o
the universal quantification.

This very abstract and general concept of quan
cation, introduced first time by [19], for example,
the particular case of classical model theory inclu
the second order quantification. Notice that this in
nalisation of the quantification does not use the
dinary concepts of open formulae and valuations
unbounded variables), but rather considers the “v
ables” as part of the signature and treats the “va
tions” as model expansions along the signature ex
sion defined by the addition of the “variables” to t
signature. This is exactly what happens in applicati
because each valuation of variables into a model
be regarded as an expansion of the model to the si
ture extended with the variables. Otherwise said,
quantification we need only to mark a part of the s
nature over which the quantification is done. Althou
this way of thinking about variables and quantificati
is well known in conventional mathematical logic [2
21] it is quite rare in the usual presentations of cla
cal logic.

Example 4. Given a signature(S,F,P ) in many
sorted first order logicFOL, the ordinary first orde
quantification by a setX of variables is the same wit
the χ -quantification, whereχ : (S,F,P ) ↪→ (S,F ∪
X,P).
-

second order quantification by the operationsF ′ \F
and predicates (relations)P ′ \ P when S = S′, and
extends also to sort quantification whenS ⊆ S′.
‘Weak’ second order quantification only overfinite
subsets of the models can be obtained by enrich
the signatures with (1-ary) symbols denoting fin
subsets of models, and consequently the models
to interpret them accordingly.

Quantifications higher than second order can
modelled by Definition 5 provided that the classic
concept of first order logic signature is extended
order to accommodate symbols denoting higher o
structures.

In the actual institutions, due to its good properti
the restriction of quantification to first order pla
an important role. The categorical definition belo
of signature morphisms corresponding to first or
quantification has been introduced in [15]:

Definition 6. In any institution, a signature morphis
χ :Σ →Σ ′ is representableif and only if there exists
aΣ-modelMχ (called therepresentation ofχ ) and an
isomorphismiχ of categories such that the followin
diagram commutes:

Mod(Σ ′)
iχ

Mod(χ)

(Mχ/Mod(Σ))

forgetful

Mod(Σ)

Example 5. In the institutionFOL of first-order logic
each extension of signaturesχ : (S,F,P ) ↪→ (S,F ∪
X,P) only adding constantsX to F is representable
by TF (X), the free(S,F,P )-model over the adde
constantsX.

Similarly, first order variables in other actual i
stitutions correspond to representable signature m
phisms [15].

Definition 7. A signature morphismχ :Σ → Σ ′ is
conservativeif and only if eachΣ-model admits a
least one expansion alongχ .
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Example 6. In conventional first order model theory,
a signature morphismχ : (S,F,P ) → (S′,F ′,P ′) is
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conservative whenϕ is injective on the sort, function
and relation symbols and does not add new operat
of sorts in S that are ‘empty’ (i.e., withoutF -
terms). Consequently, if(S,F,P ) has only ‘non-
empty’ sorts, then each injective signature morph
χ : (S,F,P )→ (S′,F ′,P ′) is conservative.

3. Logic programming over arbitrary institutions

Definition 8. Given a signatureΣ in an arbitrary
institution, aΣ-query is any existentially quantified
Σ-sentence(∃χ)ρ such thatχ is representable andρ
is a basic sentence.

Herbrand theorem reduces the problem of check
the satisfaction of a query by a presentation from
possible models to the initial model only. It relies
the existence of an initial model for the presentat
(program), known under the name of ‘Herbrand u
verse’ [10] by the classical logic programming co
munity. This initiality requirement determines the r
striction of logic programming to universal Horn th
ories, a well known fact in classical logic, and whi
has been proved for the first time in an institutio
independent setting in [22,19]. This is consistent to
fact that in the actual institutions, the universal Ho
sentences are the most complex sentences suppo
algorithms for automatic execution of logic progra
ming.

Theorem 1. In an arbitrary institution consider a
presentation(Σ,E) which has an initial model0Σ,E .
Then for each query(∃χ)ρ
E |= (∃χ)ρ if and only if 0Σ,E |= (∃χ)ρ.

Proof. Let χ :Σ → Σ ′. Assume that 0Σ,E |= (∃χ)ρ
and consider aΣ-modelM such thatM |= E. There
exists an expansionN of 0Σ,E such thatN |= ρ.
Becauseχ is representable letf = iχ (N) :Mχ →
0Σ,E . Let g : 0Σ,E → M be the uniqueΣ-model
homomorphism by the fact thatM |= E. Let M ′ =
i−1
χ (f ;g).

Then M ′ is an expansion ofM along χ and
i−1
χ (g) :N → M ′. Becauseρ is basic, there exists
g

Mρ →M ′, which means thatM ′ |= ρ. This shows tha
M |= (∃χ)ρ. ✷

Each expansionM ′ of 0Σ,E along χ such that
M ′ |= ρ is called asolutionfor the query(∃χ)ρ. The
importance of Theorem 1 is that is reduces the se
space for solution of queries fromall models to only
one model.

Various well known actual Herbrand theorems c
be obtained as special cases of this result by var
the underlying institution. For the case of pure Pro
[10] we take unsorted first order logicwithout equal-
ity, for Eqlog [12] we take [13] many sorted first o
der logic with equality, for behavioural logic program
ming [14] we take hidden algebra, for constraint lo
programming we take constraint logic [23]. Herbra
theorem for category-based equational logic can
obtained by considering the institution of catego
based equational logic [24,25]. Denotational foun
tions for new combinations between logic progra
ming and other computing paradigms can be obtai
by considering rewriting logic [9], membership log
[26], multialgebra [27], etc.

Substitutions and solution forms

In the following we will develop the Herbrand the
orem into another version which reduces the vali
tion of (existential) queries to universally quantifi
‘atoms’. In the actual situations this opens the door
developing refutation-based algorithms for logic p
gramming execution.

Given aFOL signature(S,F,P ) and two sets o
variablesX and Y , a substitutionψ from X to Y ,
denotedψ :X → Y , consists of a mapping of th
variablesX with F -terms overY (i.e.,ψ :X→ TF (Y )

as function).
For any substitutionψ :X → Y (i.e., function

ψ :X → TF (Y )) any interpretationM2 of variables
Y into an (S,F,P )-modelM determines an inter
pretationψMod(M2) of the variablesX into M by
ψMod(M2)x = (M2)ψ(x) for eachx ∈X. On the other
hand, each(S,F ∪X,P)-sentenceρ can beinstanti-
atedbyψ to an(S,F ∪Y,P )-sentenceψSen(ρ) by re-
placing eachx ∈X with the termψ(x). This phenom-
enon has the same flavour with sentence and m
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translations along signature morphisms, and we can
notice easily that
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M2 |=ψSen(ρ) if and only if ψMod(M2) |= ρ.
This remark is the key to the institution-independ
concept of substitution.

Definition 9. In any institution, asubstitutionψ :χ1 →
χ2 from χ1 :Σ →Σ1 to χ2 :Σ →Σ2 signature mor-
phisms is a pair(ψSen,ψMod) consisting of a sentenc
translationψSen : Sen(Σ1) → Sen(Σ2) and a mode
translationψMod : Mod(Σ2)→ Mod(Σ1) both of them
“preserving”Σ , i.e., the diagrams below commute:

Sen(Σ1)
ψSen

Sen(Σ2)

Sen(Σ)

Sen(χ1) Sen(χ2)

Mod(Σ1)

Mod(χ1)

Mod(Σ2)
ψMod

Mod(χ2)

Mod(Σ)

and such that the following satisfaction conditi
holds:

ψMod(M2) |= ρ1 if and only if M2 |=ψSen(ρ1)

for eachΣ2-modelM2 and eachΣ1-sentenceρ1.

Our institution-independent concept of substitut
accommodates also second order substitutions (w
replace function symbols with terms) and even hig
order substitutions in the case of institutions of high
order logics.

Remark 1. Assumeχ1 andχ2 are representable. Fo
any substitutionψ :χ1 → χ2, there exists aΣ-model
homomorphismMψ :Mχ1 →Mχ2 such that, for any
Σ2-modelM2,

ψMod(M2)= i−1
χ1

(
Mψ ;iχ2(M2)

)
.

In the actual example of first-order substitutio
ψ :X→ Y in first-order logic,Mψ :TF (X)→ TF (Y )

is the unique extension ofψ :X → TF (Y ) to an
(S,F,P )-model homomorphism. Moreover,each
first-order substitution is thus determined by a mo
homomorphism between representations.
phismsχ1 :Σ → Σ1 and χ2 :Σ → Σ2 each mode
homomorphismh :Mχ1 → Mχ2 determines a subst
tution ψh :χ1 → χ2 such thatψMod

h (M2) = i−1
χ1
(h;

iχ2(M2)) for eachΣ2-modelM2.

By the satisfaction condition for substitutions, w
notice easily thatψh is unique modulosubstitution
equivalence, i.e., for any substitutionsψh and ψ ′

h

determined byh, ψMod
h = ψ ′Mod

h and ψSen
h (ρ) ≡

ψ ′Sen
h (ρ) for eachΣ1-sentenceρ.
The Herbrand theorem below can be interprete

the various institutions which constitute applicati
domains for Herbrand Theorem 1 and which have b
discussed above.

Theorem 2. Consider an institution with representab
substitutions such that

1. for each presentation(Σ,E) with initial model,
its signatureΣ has an initial model0Σ ,

2. for each representable signature morphismχ :
Σ → Σ ′ the representationMχ is projective
with respect to all ‘quotient’ homomorphism
pΣ,E : 0Σ → 0Σ,E for any presentation(Σ,E)
having an initial model0Σ,E .

Then for each presentation(Σ,E) having an initial
model, and for any query(∃χ1)ρ

E |= (∃χ1)ρ if and only if

there exists a substitutionψ :χ1 → χ2 such that

E |= (∀χ2)ψ
Sen(ρ) andχ2 is conservative.

Proof. AssumeE |= (∃χ1)ρ and letχ1 :Σ →Σ1. By
Herbrand Theorem 1, we have that 0Σ,E |= (∃χ1)ρ.
Let M1 be the expansion of 0Σ,E along χ1 such
that M1 |= ρ and let h = iχ1(M1) :Mχ1 → 0Σ,E .
By the projectivity property ofMχ1, there exists
h0 :Mχ1 → 0Σ such thath0;pΣ,E = h. We show that
E |= (∀1Σ)ψSen

h0
(ρ) (notice also that 1Σ is trivially

conservative), whereψh0 is a substitutionχ1 → 1Σ
determined byh0.
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LetM be a model such thatM |=E and letf : 0Σ,E →
M be the unique(Σ,E)-model homomorphism. Be
causei−1

χ1
(h)=M1 |= ρ there existsg :Mρ → i−1

χ1
(h)

= M1 and we have thatiχ1(Mρ);g�χ1
= h. Let u =

g�χ1
;f . We haveh;f = iχ1(Mρ);u, hence there ex

ists a model homomorphismMρ → i−1
χ1
(h;f ). It

therefore follows thati−1
χ1
(h;f ) |= ρ, which means

that i−1
χ1
(h0;pΣ,E;f ) |= ρ which means thati−1

χ1
(h0;

i1Σ (M)) |= ρ. By the definition ofψMod
h0
(M) this im-

plies thatψMod
h0
(M) |= ρ. By the satisfaction condi

tion for substitutions we therefore deduce thatM |=
ψSen
h0
(ρ).

For the converse, we assume there exists a
stitution ψ :χ1 → χ2 such thatE |= (∀χ2)ψ

Sen(ρ).
Becauseχ2 is conservative we can find a model h
momorphismu :Mχ2 → 0Σ . We show thatM1 =
i−1
χ1
(Mψ ;u;pΣ,E) is an expansion of 0Σ,E alongχ1

such thatM1 |= ρ.
Let M2 = i−1

χ2
(u;pΣ,E). BecauseE |= (∀χ2)

ψSen(ρ) and M2�χ2
= 0Σ,E , we have thatM2 |=

ψSen(ρ). Notice that M1 = i−1
χ1
(Mψ ;iχ2(M2)) =

ψMod(M2). By the satisfaction condition for the su
stitutionψ this implies thatM1 |= ρ.

Therefore 0Σ,E |= (∃χ1)ρ. By Herbrand Theo-
rem 1 we now have thatE |= (∃χ1)ρ. ✷

The substitutionsψ of Herbrand Theorem 2 ar
calledsolution forms. The proof of the ‘only if’ part
of this theorem shows that each solution for a quer
an instance of a solution form for the query, while t
proof of the ‘if’ part shows that each instance of a
solution form for a query to the initial model gives
solution for the query.

Notice that the supplementary conditions of H
brand Theorem 2 are very mild in the actual exa
ples. For example, in first order logicFOL, the second
condition is easily satisfied in the presence of an
iom of choice because the representation model
the representable signature morphisms are free
the set of variables and the ‘quotient’ homomorphis
0Σ → 0Σ,E are surjective.
Now we introduce a couple of concepts playi
an important role in th study of structured softwa
specifications or programming modules.

Definition 11. A signature morphismϕ :Σ → Σ ′
is liberal if and only if the reduct functor _�ϕ :
Mod(Σ ′)→ Mod(Σ) has a left-adjoint, denoted(_)ϕ .

M

h

(Mϕ)�ϕ

h′�ϕ

Mϕ

there exists a uniqueh′

M ′�ϕ M ′

In the actual institutions the liberality of signatu
morphisms holds in general easily.

Exactness properties for institutions formalise
possibility of amalgamating models of different sign
tures when they are consistent on some kind of
tersection’ of the signatures (formalised as a push
square):

Definition 12. An institution is exact if and only if
its model functorMod :Signop → Cat preserves finite
limits. The institution issemi-exactif and only if Mod
preserves pullbacks.

Semi-exactness is everywhere.2 Virtually all insti-
tutions formalising conventional or non-convention
logics are at least semi-exact. In general the inst
tions of many-sorted logics are exact, while those
unsorted (or one-sorted) logics are only semi-ex
[28]. However, in applications the important amalg
mation property is the semi-exactness rather than
full exactness.

The following amalgamation property is a dire
consequence of semi-exactness:

Definition 13. The commuting square of signatu
morphisms

2 At least in theweakform requiring only the existence but no
the uniqueness.
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Proposition 1. IfM1 is a solution for the query(∃χ)ρ,
thenM ′ is a solution for the query(∃χ ′)ϕ1(ρ).
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φ2 φ′
1

Σ2
φ′

2
Σ ′

is anamalgamation squareif and only if for eachΣ1-
modelM1 and aΣ2-modelM2 such thatM1�φ1

=
M2�φ2

, there exists an uniqueΣ ′-modelM ′ such that
M ′�φ′

1
=M1 andM ′�φ′

2
=M2. The modelM ′ is called

theamalgamationofM1 andM2.

Corollary 1. In a semi-exact institution each pusho
square of signature morphisms is an amalgamat
square.

Logic programming modules can be abstrac
to presentations, and module imports to presenta
morphisms. Various other module compositions c
be expressed as co-limits of presentation morphi
[28].

If we assume that the institution is semi-exact a
all signature morphisms are liberal, for any signat
morphismϕ :Σ →Σ ′, we can translate anyΣ-query
(∃χ)ρ to theΣ ′-query(∃χ ′)ϕ1(ρ) where

Σ
χ

ϕ

Σ1

ϕ1

Σ ′
χ ′ Σ ′

1

is a pushout of signatures. Then it is rather e
to show thatϕ1(ρ) is basic (by the fact that libera
signature morphisms translate basic sentences to
sentences) and thatχ ′ is representable (by definin
Mχ ′ =Mϕ

χ ), hence(∃χ ′)ϕ1(ρ) is indeed a query.
On the other hand, for each presentation morph

ϕ : (Σ,E) → (Σ ′,E′), each expansionM1 of the
initial model 0Σ,E is translated to the expansionM ′

1
of the initial model 0Σ ′,E′ such that the diagram belo
commutes:

Mχ
ηMχ

iχ (M1)

M
ϕ
χ �ϕ
iχ ′ (M ′

1)�ϕ

M
ϕ
χ

iχ ′ (M ′
1)

0Σ,E 0Σ ′,E′�ϕ 0Σ ′,E′

where η is the unit of the adjunction between th
categories of models ofΣ andΣ ′.
c

1
Moreover, if the presentation morphismϕ is con-

servative for initiality, i.e., 0Σ ′,E′�ϕ = 0Σ,E , then for
each solutionN for (∃χ ′)ϕ1(ρ), there exists a solutio
M1 for (∃χ)ρ such thatM ′

1 =N .

Proof. Let us assumeM1 is a solution for(∃χ)ρ.
Then by the definition ofM ′

1 we have that there ex
ists a model homomorphismM1 → M ′

1�ϕ1
. Because

M1 |= ρ we have that there exists a model hom
morphismMρ → M1, which implies that there ex
ists a model homomorphismMρ → M ′

1�ϕ1
. By the

universal property of the adjunction corresponding
ϕ1 we have that there exists a model homomorph
Mϕ1(ρ) =Mϕ1

ρ →M ′
1, which shows thatM ′

1 |= ϕ1(ρ).
For the second part, we assume thatN is a solution

for (∃χ ′)ϕ1(ρ). We defineM1 = i−1(ηMχ ;iχ ′(N)�ϕ).✷
The actual meaning of the first part of this prop

sition is that each module import ‘preserves’ the so
tion of queries, while the meaning of the second p
is that the module imports which ‘protect’ the initi
model of the imported module also ‘protect’ the so
tion of queries.

5. Conclusions and future research

We have developed denotational foundations
logic programming independently of the details of t
underlying institution by employing internal institu
tion-independent concepts of variable, substituti
quantification, and query.

At this level of generality we have proved the He
brand theorem in two versions, the second one re
ing the existence of solutions for queries to existe
of solution forms. In the actual institutions this ope
the door for execution of logic programming by ref
tation algorithms such as resolution, paramodulat
etc.

We have also analysed modularisation issues s
as preservation and protection of solutions for que
along presentation morphisms.

The importance of this work resides in the fa
that it sets denotational foundations for a uniform
velopment of logic programming over a large varie
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of computing science logics. Moreover, by employ-
ing concepts of mappings between institutions [29] we
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(Eds.), Logic Programming: Functions, Relations and Equa-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 295–

(2)
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plan to develop a theory about borrowing of vario
aspects of the logic programming paradigm betw
logic programming languages or systems defined o
different logics. We also plan to extend this institutio
independent study from denotational to operationa
mantics of logic programming.
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