Importing SKIF files into Protege: Considerations and Compromises†

Patrick Cassidy

MICRA, Inc.

cassidy@micra.com

Summary: These notes describe the experience of the author in importing into Protege the SUMO 1.55 file, recorded in SKIF, a variant of the KIF (Knowledge Interchange Format) knowledge representation language. SUMO is an ontology developed by a group at Teknowledge (primarily by Ian Niles and Adam Pease) in part as a collaboration with a public group which has been discussing the possibility of creating a Standard Upper Ontology which can be adapted as an IEEE standard (the IEEE-SUO). Although SUMO includes parts of other publicly available ontologies, and the developers have responded to suggestions from members of the IEEE-SUO, almost all of the actual knowledge representations have been written in SKIF by the Teknowledge group. The SKIF version of SUMO is in a first order logical language, in which the meanings of the relations and some classes are restricted by axioms that would not show up as classes, relations, or instances in a frame-based ontology representation such as Protege. As a result, there are a number of mismatches, some serious, between the knowledge representations of SUMO-SKIF and of Protege. The project described here is intended to answer in part the question of whether the logical structures of a SKIF ontology can be imported into SUMO without loss of information or the generation of ambiguity in the resulting knowledge base. The experience this far suggests that the answer is yes. A more definitive demonstration of the utility of Protege for representing SKIF-based ontologies, however, will depend on the creation of an export routine, which will allow regeneration of the original imported SKIF ontology, along with any modifications, additions, or deletions that were made within the Protege ontology development environment. Building such an export routine is a goal of future effort. The import function is provided by a Protege tab, a plug-in provided within the Protege API by its developers to allow extensions such as this. Protege and the plug-in extension describe here (“SkifTab”) are written in the Java programming language.

I. The Major Problems

The primary mismatches between the frame-based knowledge representation of Protege and the first-order logic based representation in SKIF appear to be:

· Limited built-in support for axioms in Protege

· No direct provision for ternary or higher relations in Protege

· No direct provision for discrimination of functions and slots

· Only metaclasses in Protege can have classes as instances

· The restriction that instances can have only one direct parent class, and no two frames can have the same name.

Of these, the last caused the greatest expenditure of programming effort. This problem may be partly relieved by the latest beta version of Protege 2.0, which has been said to support multiple parents for instances. When that version is stabilized for general release, a newer modified version of the SkifTab can be written to take advantage of that feature of Protege 2.0, which will presumably allow a closer match of the logical models of Protege and SKIF, though serious differences will still remain.

II. The General Solutions

· Adaptation of Protege structures for purposes not intended by its developers

· Redundancy of representation of logical structures for greater perspicuity

· Programming work-arounds to equate frames forced to have different names by the Protege one-parent restriction

· A few slight modifications to the input SKIF file that do not change its logical structure but allow a more consistent representation of related data in Protege.

The important principle followed in deciding how to represent specific logical structures was that (for one user, at least) the primary purpose of using Protege is to allow the perspicuous visual display of logical relations between concepts in an ontology, so as to assist understanding of the structure of the ontology and thereby ease the creation of logically sound ontologies which may have great complexity. The duplicate representation of certain concepts served this goal, and will not cause logical errors provided that both the ontologist viewing this Protege implementation and any programs interpreting the data structures are aware of the duplication and can recognize it.

To implement these design decisions, a core Protege knowledge base was created, called “SKIFcore”, which has the basic logical structures deemed necessary to properly represent the data in the SUMO SKIF-format file. Without the logical structures of the SKIFcore knowledge base, the importation will not proceed correctly, and error messages will be generated. To import a SKIF file, the user opens the SKIFcore knowledge base in Protege, adds the SkifTab tab, selects the “Import SKIF file” button in the SkifTab tab, and provides the name of the SKIF file to be imported. Once imported, the knowledg base can be renamed and saved in Protege format, and manipulated as other Protege files are, without the SkifTab being present.

III.
The Boring Details

1.
The programming interface.

Several forms of access to the Protege API (Applications Program Interface) were provided by its developers. For importing a SKIF file, we created a simple tab plug-in based on a model tab provided on the Protege web site. The Protege “tab” created takes the form of one Java class, but several other external and internal classes were created to handle intermediate data structures during the data importation process.

Although explicit documentation of the Protege interface is sparse, the automatically generated Javadocs documentation plus more expansive documentation for critical classes was sufficient to allow a total novice at Java programming to access the API and modify all the necessary data structures without direct consultation with others experienced in Protege programming. This fact is mentioned to encourage others to explore creating extensions to Protege.

2.
The axioms

Protege has a limited built-in inferencing ability, and there is a provision for logical restrictions to be created in the form of “PAL-constraints”. Since our purpose was the accurate import and export of SKIF data, and inferencing within the Protege environment is not necessary, we ignored the PAL language and imported axioms from the SKIF file directly, as byte-for-byte copies, and stored them as instances of “:UBL-AXIOM”, a subclass of the Protege metaclass “:PAL-CONSTRAINT”.

No interpretation of the axioms is attempted in the importation process. A simple check on the parenthesis balance is performed, but the axioms are otherwise treated as simple strings. A simple check could be made that the first token of each axiom is a valid recorded relation (Slot), but this check is not implemented in the present version.

There are some logical implications of the axioms, in particular some of the axioms related to the classes of Relation of which the relations are instances, which are important in determining how to represent specific relations in Protege. Where such interpretation is necessary, it is hand-coded into the importation program and not left to interpretation by a general theorem-prover.

A limited number of other inferences are performed in the input process, such as the expansion of “partition” propositions relations so as to explicitly represent each of the member classes of the partition as disjoint from each other.

These inferences will raise a question of what to do when the subsequent export of the data is performed: should the expanded inferences be represented explicitly in the exported file, or be contracted to the implied form as in the original file? The logical structure of the exported file will be the same in either case, and the decision may be a matter of taste for the user. This issue does not have to be considered at this stage.

3.
Ternary and Higher Relations

The SKIF language allows ternary and higher relations to be represented, and SUMO 1.55 uses such higher-arity relations. The logical model of Protege is based on the OKBC model, in which relations are binary-only connections between two concepts. However, Protege also has “facets” on its Slots, i.e. the Slots have their own Slots called “facets”, and these facets can be used to store the data represented in higher-arity relations in SKIF. Specifically, for each third, fourth, or fifth argument position in a higher-arity relation, three facets are provided:

1. Domain – the name of the class of which the argument is an instance or subclass;

2. ValueType – a facet whose value is “Instance” if the argument is an instance of the class specified in the “Domain” facet, and “Class” if the argument is a subclass of the class specified in “Domain” facet. (In the original SKIF file, an “instance” relation is signified by the “domain” predicate, and a “subclass” relation is signified by a “domainSubclass” predicate.)

3. Value – a facet specifying the actual value of the argument of the relation – this is filled only when the relation is instantiated (when instances of the domain1 argument are created), and corresponds to the “value” facet automatically provided by Protege for the target (second argument) of its prototypical Slot.

Any number of places for higher-arity relations can be thus accommodated within the Protege model, although the Protege developers do not recommend using the facets in this manner. Our purpose is merely to allow storage, creation, and modification of logically sound data for import from and export to a SKIF file, and this mechanism seems to be adequate to do so accurately and unambiguously.

4. Functions versus Slots

a). How to treat functions

On the surface, a function in SKIF and a Predicate look very similar:

· (father PrinceCharles PrinceWilliam)
is an instance of a predicate.

· (MultiplicationFn 3 2)

is an instance of a function.

As explained in the SUMO file comments, the former, however, represents a truth value (“true” or “false”), while the latter represents an instance of a class (in this case, the class of Quantities, namely the instance “6”). The meanings are therefore used in very different manners.

Since functions resemble Slots in taking an argument (Domain 1) from some class, it appears helpful in understanding the meanings of the logical relations to have functions represented as slots, like relations. In the frame-based paradigm, to see a relation or a function as a template slot on a class means that some instances of that class may (or may not, depending on the relation) have that specific relation to some instance of another class (the Domain 2 class). When the relation is instantiated as in the first example above, the proposition becomes explicit as to which instance of the Domain 1 class has that relation to which instance of the Domain 2 class. To see such potential relations is helpful in understanding the intended meanings and contexts for each particular class. In the experience of the author, to see all such relations in one view is helpful for accurately building ontologies.

On the other hand, the return value of an instance of a function is not merely “true” or ‘false”, but might be an instance of any class in the ontology – depending, of course, on the function. This is an important piece of information, and it can be represented in Protege by including functions among the classes of the ontology. Specifically, a function (logically, the set of all instances of the tuples in the function) is a class whose return value is an instance of some other class, i.e. the function itself is a subclass of the class of its range. Thus the function “(MultiplicationFn Quantity Quantity)” is defined to be the class of all Quantities which can be returned as the value of the multiplication of two other Quantities. We therefore include in Protege the class (MultiplicationFn Quantity Quantity) as a subclass of Quantity. This allows the explicit recognition of the Range of a function as well as its Domain 1. Specific instances of such a function-class would be stored as Protege instances, having the appearance of the instance-level proposition above, i.e.: (MultiplicationFn 3 2) is an instance of the class (MultiplicationFn Quantity Quantity). This usage differs from that of set theory. Proper interpretation of this representation will have to be specifically encoded in any program using this variant form of Protege file.

b.) How to treat non-functional relations

Relations in SKIF are represented as Slots in Protege. The mechanism described above allows the user of Protege to view functions in the Class windows of both their Domain1 and their Range. A Slot, however, is only viewed in a class window of Protege when the class window of its Domain 1 is viewed. Although this is usually the most important relation (serving to an extent to help “define” the Domain 1), there are cases where viewing the slot in relation to its Domain 2 would be helpful. Such a view is not implemented in the default Protege or in this adaptation. Other ontology browsers may be more helpful in viewing such relations more directly.

5. Metaclasses and meta-metaclasses.

A serious mismatch of the SKIF knowledge representationa s used in SUMO and the Protege representation is the possibility in SUMO for a class to be a “member of itself” – specifically, the class “SetOrClass” in SUMO is a member of the class “SetOrClass”, i.e. is a member of itself. Certain logical problems can occur when such logical relations are allowed, and in some knowledge representations, including Protege, there must be a hierarchy of classes, so that a class can only be a member (an instance) of a metaclass (and a metaclass must be an instance of a meta-metaclass). Since metaclasses are provided in Protege, this mismatch is in most cases benign, allowing very simple alignment of Protege and SKIF structures.

In a default Protege implementation, all classes are instances of the built-in Protege metaclass “:STANDARD-CLASS”. For the SKIF importation, a subclass of “:STANDARD-CLASS” was created, called “:UBL-CLASS”, and slots were attached to :UBL-CLASS to allow the representation of relations between classes that appear in the SUMO SKIF file, such as “disjoint” or “partition”. All classes imported from a SKIF file are recorded as instances of :UBL-CLASS. A provision is also made, though not required for the current SUMO file, to allow synonyms of class names and slot names. The “:SYNONYMS” relation is also attached at the metaclass level. These class-level relations were attached to :UBL-CLASS prior to importation of the SKIF file.

If other class-level relations are added to a SKIF file, beyond those that are recognized by the present import program, they will not be properly handled and will generate error messages. The automatic handling of such novel relations is possible, and can be added in a future version. The special handling of existing class-level relations is used in the present version because it is much simpler to control the appearance of the screen by manual modification of the Protege Widgets when the classes already exist. Since appearance of the screen is considered important in affording ease of understanding, the control of the screen appearance for known class-level relations was considered sufficient reason to treat the class-level relations implemented in SUMO as special cases.

In one case, the class/metaclass mismatch does cause a difficulty, specifically for the case of the class “InheritableRelation”. The SUMO documentation states:

· "This is a &%Class of &%Classes. Each &%instance of &%InheritableRelation is a &%subclass of &%Relation whose properties can be inherited downward in the class hierarchy via the &%subrelation &%Predicate."

This presented two problems: (1) where to put this “class of classes”; and (2) how to recognize when a subRelation inherits the parent class of the parent relation. For both problems ad hoc solutions were used.

 (1) The class “InheritableRelation” itself was created prior to the importation of the SKIF file, as a subclass of the built-in Protege metaclass “:RELATION”. This permitted the creation of a set of instances of this metaclass with the same “base names” (explained below) as the specific inheritable relation classes, which are themselves classes. Since Protege does not allow any concept to be an instance of more than one class, the actual classes for all relations were represented as normal classes within the hierarchy, as subclasses of “Relation”, which are all instance of :UBL-CLASS. The instances of InheritableRelation have the same base names as the relation classes, but are to Protege totally different entities, with no direct logical connection to the relations classes. The logical relation can only be recognized by special methods within the SkifTab tab-class appended to the base Protege implementation.

 (2) The recognition of specific relations as “inheritable” and the inheritance of instance relations to their subrelations therefore had to be accomplished by special routines within the import method. The section below discusses this problem in more detail.

The Class “IntentionalRelation” in SUMO is also problematic, being an instance of “InheritableRelation” but also having subclasses. It was placed as a subclass of the metaclass :RELATION.

6. Multiple Instance Parents and the use of Base Names

In Protege every class, slot (relation) or instance is represented as a Frame. No two frames may have the same name. Therefore no slot can also be an instance of a class. Likewise, no Instance of one class can be an instance of another class. This is not a logical necessity for ontologies in general, but is a design decision for Protege. Since every relation in SUMO is represented as a slot, and every relation in SUMO is also an instance of at least one class of relations, this presents a serious obstacle to simple importation of the SUMO SKIF file into Protege. The work-around (not a satisfactory solution) was to create instances in Protege for all cases where an instance proposition occurred in the SKIF file, and also to create instances where instance relations were implied, as with subRelations of inheritable relations. The names of each duplicate instance, however, had to differ from the name of any other frame. We adopted the tactic of appending an underscore to the original name (no names in SUMO had an underscore), and following the underscore appending a number to make the name unique within the Protege knowledge base. (***NOTE*** The program can be modified to allow other characters as extension symbols if a user wants to allow the underscore character in the base names themselves). The interpretation is that all frames (class, slot, function, or instance) are intended to refer to exactly the same concept if they have the same “base name”, which is the name up to but not including the first underscore, if any. Thus frames named diameter, diameter_1, and diameter_2 are all intended to represent the same concept, even though one may be a slot, another may be an instance of a class, and the third may be an instance of another class. In SUMO a class may also be an instance of a class.

This tactic complicates the programming when it is necessary to determine whether a particular concept already exists in the Protege knowledge base. In addition, when one views one instance or slot, Protege does not have a built-in cross-reference to make it clear that one instance may be intended to be the same as another instance. The practical problems will occur when any such concept with multiple occurrences is modified or deleted. Protege will not automatically align such modifications across all concepts intended to be the same. To do this, it will be necessary to create special consistency checks within the SkifTab, or within the file export method. Such checks have not yet been implemented.

7. Slot restrictions on specific classes

In the SUMO SKIF specification there is no direct support for restricting the domain or range of a relation (slot, in Protege) when the relation is applied to different classes. In SUMO, for each relation there is only one domain 1 and one domain 2 defined (though that domain may be a union of more than one class). For example, we might wish to define a relation “hasIntendedAudience” with domain 1 being a Communication and domain 2 being a GroupOfPeople. Then we might wish to specify that when domain 1 is a PrivateMessage (a subclass of Communication), the intended recipient must be an individual. This can be done in Protege by modifying the slot at the subclass, changing the domain 2. This cannot be done by changing domains in SKIF. There are two work-arounds for this situation, if one does not want to add a provision for domain restrictions in the SKIF specification.

One can simply define the restriction of the relation axiomatically, specifying that for that relation when domain 1 is an instance of PrivateMessage, domain 2 must be an instance of individual. This axiom will create the intended logical structure, but the axiom will not be evident in Protege when using the relation.

An alternative is to create a subslot of relation (e.g. “hasIntendedAudience” could have subslot “hasIntendedRecipient”) with the domain 1 being PrivateMessage and domain 2 being a Person. This will have the same effect, but the restrictions will be more easily discerned in a Protege visual presentation.

There are advantages and disadvantages to each method, and the user may want to use one or the other restriction mechanism on a case-by-case basis. For the general case, we have adopted the technique of creating subrelations rather than restricting relations axiomatically for subclasses.

When an export routine is developed to translate a Protege ontology into SKIF, if a user employs the Protege facility for restricting the value type of a relation when applied to subclasses, it will be necessary to translate that as an axiomatic restriction. If the user wishes to see such restrictions on the slot within a Protege class window, it will also be necessary to provide a mechanism to recognize such restrictions and modify the slot as applied to that specific subclass. Neither the import nor export facility have been as yet developed, but any axiomatic restrictions in the SKIF file will be preserved as axioms in the Protege database, and the logical structure will be correct, even if the restriction is not evident when viewing the template slot in the subclass window.

8. Representation of Strings

Quoted strings may appear as arguments in certain instance-level assertions. Protege has an internal mechanism for representing strings as the value of an argument, and this could be used. However, in the SUMO SKIF file, where a string argument is allowed, the domain restriction is given as “SymbolicString”, one of the classes in the SUMO ontology. For simplicity, at this stage (version 0.15) we have created instances of the class “SymbolicString” to represent such strings, rather than using the internal Protege String object. If a user does represent a value as a string, on export this value will have to be converted to an instance of “SymbolicString” (or its equivalent in other terminology).

9. Modifications to the SUMO file

a). Missing Domain names

The SUMO ontology represented in SKIF takes advantage of a modification of KIF that allows variable-arity relations, by use of a “row variable”, usually designated as “@ROW” which is a place-holder for any number of arguments. Where such variable-arity relations are defined in SUMO, sometimes there is no specification for the domain (allowed classes) of the arguments, though specific domains may be implied by the documentation for the relation. In order to properly place a relation or function within the proper frame of a frame-oriented knowledge representation, it is necessary to identify at least the domain of the first argument, and in the case of functions, also the range of the function. In a few cases such arguments were missing in SUMO and they were inserted manually before importing the file, using the documentation to decide on the proper class to use as domain or range. This does not change the logical structure of the ontology, since the class specifications were required by the logic of the relations, though not explicitly specified in every case.

b). Module declarations

SUMO 1.55 is contained in one file, organized into 12 modules, where related classes and relations are kept in close proximity. The beginnings of modules are signified by the phrase “Begin File”. Solely for programming convenience, the beginnings of such modules were hand-tagged with the tags <module>... </module>. If the module declarations in the SUMO file were guaranteed to be unique, any format would serve as well.

c). Instance-level propositions

The current version is written to assign values to the relations specified in an input file between instances of classes, only if those instance-level assertions (propositions) are contained within an assertion block between the tags <assertion> and </assertion>. These tags must be contained in a comment line, beginning with “;;”. Assertions marked in that way are saved as literal strings, as instances of the metaclass “:Assertion”, and the instance-level relations are also represented within the instance frame of the *first* argument, with the last argument represented as the value of the relation in the instance pane. The other arguments of higher-arity propositions are represented in the internal database, but are not visualized except within the literal string in the :Assertion instance.

d). Restrictions on Instance-level propositions

For and instance-level assertion to be interpreted properly, the instance which is the first argument (the domain 1 argument) must be explicitly declared as an instance of its class in the SKIF file. This requirement is intended to make the SKIF text file more readable, and to reduce the potential for error when creating SKIF files with a word processor. Thus if the import routine encounters a domain 1 argument which should be an instance of a particular class, and that instance has not been defined, an error will be reported. Each instance declaration block is also required to have a documentation proposition as its final proposition.

For arguments other than domain 1, the import method will create a new instance of the allowed class for that domain, if the instance does not already exist. Errors will be reported if:

· (1) the instance does not exist and there is more than one allowed class for that argument, meaning that the parent type of the instance cannot be determined; or

· (2) if the instance exists, but is not of the allowed type.

10. Tasks for the Future

a) Re-export of imported data

The first version of the SKIF import program appears satisfactory as a means to take advantage of the visual compactness and great flexibility of the Protege ontology development environment, for the purpose of visualizing an ontology and comprehending the multiple relations between concepts. However, in order to allow Protege to function as an ontology development environment for ontologies whose canonical representation is SKIF, it will also be necessary to demonstrate that the data imported from the SKIF file can be re-exported without loss of information, introduction of ambiguity, or unintentional addition of invalid information. For such a re-export to be considered successful, it should not be necessary for the re-exported file to be identical to the original, rather it should only be necessary that it contain the same logical information. As mentioned above, certain inferences in the importation program cause explicit representation of relations (such as disjoint) that are only implied in the original file (e.g. in a partition proposition). In the absence of additional program functions, a re-exported file will contain all implied inferences as explicit propositions, regardless of whether they were explicit or implicit in the original file. Thus some propositions in a re-exported file may be redundant, but the sum of all the re-exported information should be identical to that in the original file. Whether the export program should provide the option to re-compress such expanded inferences is a matter for discussion among users.

b). Other utilities

Having the ability to import a SKIF file into Protege provides an opportunity to add other functionality, such as consistency checking or logical inferencing. Such functionality can be added directly to the SkifTab, provided that an appropriate program code is available in Java, or can be converted from another programming language. Whether this is desirable depends on whether programs to perform such desired tasks are already available for knowledge bases in the SKIF format, in which case the least burdensome procedure would be simply to export the knowledge base into SKIF and use existing programs.

11. Conclusion

Experience developing a program to import logical structures from the SUMO 1.55 ontology written in SKIF format into a Protege knowledge base suggest that, in spite of formal differences in the theoretical basis for the different knowledge representations, knowledge in one format can be converted accurately into knowledge in the other format. Development of a program to export a Protege file into SKIF format is necessary to provide firmer support for this suggestion.

One who uses this conversion utility to view a SKIF-based ontology in Protege needs to be aware that the default logical model of Protege does not provide the correct interpretation of the imported data. Thus programs which use a Protege knowledge base and perform inferencing on the assumption that the knowledge base follows the default Protege logical model will almost certainly reach incorrect conclusions. In particular, the Protege requirement that every frame represents a distinct logical entity is violated by the manner in which a SKIF database is imported into Protege. To reason with the Protege knowledge base, it would have to be exported to SKIF format and reasoners tuned to the SKIF representation could then be used. Alternatively, modified reasoning routines which take into consideration the specially adapted logical structure of the imported data can be developed and used within the Protege environment.

===

Notes:

† The program discussed here is designed to be used as a plug-in for the Protege ontology development system. It is available as a Java jar file and requires the use of a specially-constructed Protege base file named SKIFcore. The file that has formed the basis for testing the import program is the text file for SUMO version 1.55, available from the Teknowledge web site. The current version of the import program, very preliminary and guaranteed to have at least a few bugs, is version 0.15, current as of January 30, 2004.

