Towards a Reference Library of **Upper Ontologies** the DOLCE point of view

Nicola Guarino Head, Laboratory for Applied Ontology Institute for Cognitive Sciences and Technology, National Research Council Trento, Italy

Thanks to all LOA people!

www.loa-cnr.it

Summary

- 1. Lightweight ontologies vs. axiomatic ontologies
- 2. Why a Reference Library of (axiomatic) Upper Ontologies
- 3. What might the library look like
- 4. How to build such a library: a common framework
 - A common minimal vocabulary (meta-ontology?)
 - A common strategy to elicit the (hidden) assumptions behind each UO
 - Common guidelines to express Ontology Design Rationale
 - Common metrics to compare ontologies
- 5. How to **evaluate** the practical utility of the library and of the single modules.
- 6. (DOLCE's basic choices)

Lightweight ontologies vs. axiomatic ontologies

different roles of ontologies

Lightweight ontologies

- Intended meaning of terms mostly known in advance
- Taxonomic reasoning is the main ontology service
- Limited expressivity
- On-line reasoning (stringent computational requirements)

Axiomatic ontologies

- **Negotiate meaning** across different communities
- Establish consensus about meaning of a new term within a community
- Explain meaning of a term to somebody new to community
- Higher expressivity required to express intended meaning
- Off-line reasoning (only needed once, before cooperation process starts)

When are axiomatic ontologies useful?

- 1. When *subtle distinctions* are important
- 2. When *recognizing disagreement* is important
- 3. When *rigorous referential semantics* is important
- 4. When *general abstractions* are important
- 5. When *careful explanation and justification* of ontological commitment is important
- 6. When mutual understanding is important.

Why a Reference Library of Upper Ontologies

- Understand disagreements
- Maximize agreements
- Promote interoperability
- A starting point for building new ontologies
- A *reference point* for easy and rigorous comparison among different ontological approaches
- A *common framework* for analyzing, harmonizing and integrating existing ontologies and metadata standards

The WFOL architecture (WonderWeb FP5 project)

A common minimal vocabulary (meta-ontology?)

- What is an ontology
- Common terms
 - Property vs. relation
 - Property vs. quality (harder...)
 - Primitive/defined relation
 - Conceptual relation vs. extensional relation
 - •

Common strategy to elicit hidden assumptions

- Systematically explore hidden intra- and inter-categorial relationships
 - How is subprocess related to part?
 - What are the possible relations within processes?
- Use general issues of *formal (philosophical) ontology* to elicit the assumptions made
- Exploit formal meta-properties (OntoClean-like)

Formal Ontological Analysis

- Theory of Essence and Identity
- Theory of Parts (Mereology)
- Theory of Wholes
- Theory of Dependence
- Theory of Composition and Constitution
- Theory of Properties and Qualities

The basis for a common ontology vocabulary

Common guidelines to express ontology design rationale

- Identify issues
- List possible alternatives
- Carefully justify and position the choices made with respect to possible alternatives
- Basic options should be clearly documented
- Clear branching points should allow for easy comparison of ontological options
- Tradeoffs with respect to:
 - Choice of domain
 - Choice of relevant conceptual relations
 - Choice of primitives
 - Choice of axioms

Comparing ontolgoies: precision and coverage

High precision, max coverage

Low precision, max coverage

Max precision, limited coverage

Low precision, limited coverage

Evaluating Upper Ontologies

• [to be completed]

Extra slides

Ontologies and intended meaning Conceptualization C (relevant invariants across Situations situations: D, 究) Ontological commitment K Language L Models $M_D(L)$ **Tarskian** interpretation I Ontology Intended models $I_K(L)$ Ontology models Ik(L)

Why precision is important

DOLCE

a Descriptive Ontology for Linguistic and Cognitive Engineering

- Strong cognitive/linguistic bias:
 - **descriptive** (as opposite to *prescriptive*) attitude
 - Categories mirror cognition, common sense, and the lexical structure of natural language.
- Emphasis on cognitive invariants
- Categories as conceptual containers: no "deep" metaphysical implications
- Focus on design rationale to allow easy comparison with different ontological options
- Rigorous, systematic, interdisciplinary approach
- Rich axiomatization
 - 37 basic categories
 - 7 basic relations
 - 80 axioms, 100 definitions, 20 theorems
- Rigorous quality criteria
- Documentation

DOLCE's basic taxonomy

Endurant Quality Physical **Physical** Amount of matter **Spatial location** Physical object **Temporal Feature** Non-Physical **Temporal location** Mental object Social object **Abstract Perdurant Abstract** Static Quality region Time region State Space region **Process Dynamic** Color region **Achievement** Accomplishment

DOLCE's Basic Ontological Choices

- Endurants (aka continuants or objects) and Perdurants (aka occurrences or events)
 - distinct categories connected by the relation of participation.

Qualities

- Individual entities inhering in Endurants or Perdurants
- can live/change with the objects they inhere in
- Instance of *quality kinds*, each associated to a **Quality Space** representing the "values" (qualia) that qualities (of that kind) can assume. Quality Spaces are neither in time nor in space.

Multiplicative approach

 Different Objects/Events can be spatio-temporally co-localized: the relation of constitution is considered.