Measurement Concepts

This section contains basic concepts, generally adapted from the ISO/IEC, *International Vocabulary for Metrology – Basic and General Concepts and Associated Terms* (VIM), 3rd edition, ISO/IEC Guide 99:2007.

1 Basic Quantity Concepts

Figure 1: Quantities

quantity

a scalar quantity or a vector quantity

scalar quantity

Definition:

Definition:	property of a phenomenon, body, or substance, to which a number can be assigned
	with respect to a reference
Source:	$\underline{\text{VIM}}$ [1.1, 'quantity']

vector quantity

Definition:	a vector whose components are scalar quantities
Source:	<u>VIM</u> [1.1, Note under 'quantity']

quantity kind

Definition:	aspect common to mutually comparable quantities
Source:	$\underline{\text{VIM}}$ [1.1, 'kind of quantity']
Concept Type:	class of classes

Note:	Each quantity kind is a subclass of quantity, with the property that all instances of that subclass are mutually comparable, and the further property that instances of any other quantity kind are not comparable to them.
Note:	Not all subtypes of quantity are quantity kinds.
<u>quantity</u> is instance of	quantity kind
Necessity:	Each quantity is an instance of exactly one quantity kind.
measurement unit	
Definition:	<u>scalar quantity</u> , defined and adopted by convention, with which any other <u>quantity</u> of the same <u>quantity kind</u> can be compared to express the ratio of the two <u>quantities</u> as a number
Source:	$\underline{\text{VIM}} (1.9, \text{`measurement unit'})$
measurement unit has	name <u>text</u>
Possibility:	Each measurement unit may have zero or more names.
measurement unit has	symbol <u>text</u>
Possibility:	Each measurement unit may have zero or more symbols.
quantity value	
Definition: Source:	<u>number</u> and <u>measurement unit</u> together expressing magnitude of a <u>scalar quantity</u> \underline{VIM} [1.1, 'quantity value']
quantity value has num	lber_
Necessity:	Each <u>quantity value</u> has exactly one <u>number</u> .
quantity value has mea	surement unit
Necessity:	Each quantity value has exactly one measurement unit.
quantity value express	es <u>scalar quantity</u>
Inverse: Possibility:	<u>scalar quantity</u> has magnitude <u>quantity value</u> Each <u>quantity</u> may have more than one magnitude .

2: Systems of Quantities

Figure 2

system of quantities

Definition:	set of quantities together with a set of non-contradictory equations relating those quantities	
Source:	VIM (1.9, 'system of quantities')	
system of quantities defines measurement unit for quantity kind		
Definition:	A system of quantities defines a set of "orthogonal quantity kinds" to be its base quantities. For each such base quantity, it defines a reference quantity that is the fundamental measurement unit for that quantity kind	
Concept Type:	reified (ternary) relation	

base quantity

Definition:	quantity in a conventionally chosen subset of a given system of quantities, where no
	subset quantity can be expressed in terms of the others
Source:	$\underline{\text{VIM}}$ (1.9, 'base quantity')

base unit

Definition:	measurement unit for a base quantity in a given system of quantities
derived unit	
Definition:	quantity, in a system of quantities, that is defined in terms of the base units of the system
Source:	\underline{VIM} (1.9, 'derived quantity')
Example:	In a system of quantities having the base quantities length and mass, mass density is a derived quantity defined as the quotient of mass and volume (length to the third power).
unit definition	

Definition:	mathematical formula that defines a given derived unit in terms of base units
Note:	A unit definition involves a multiplier and technically each of the base units of the
	system of units to some power. The multiplier must be expressible as an exact rational
	number, a real number to some specified accuracy, or in certain cases, an exact
	irrational number (such as pi or the square root of 2).

unit definition element

Definition:	a power of a base unit that serves as a "dimension" in a unit definition
Example:	metres to the 3^{rd} power (m ³) in the definition of 'stere'

derived unit has unit definition

Necessity:	Each derived unit has exactly one unit definition.
Necessity:	Each unit definition is the definition of exactly one derived unit.

unit definition is product of unit definition elements

Possibility:	Each unit definition may be the product of one or more unit definition elements
Necessity:	Each unit definition element is in exactly one unit definition.

unit definition has numerator number

Necessity: Each derived unit has exactly one numerator.

unit definition has denominator integer

Necessity:	Each derived unit has exactly one denominator
Note:	The denominator may well be 1. But allowing the denominator to be specified
	separately allows exact rational multipliers to be specified. (It also avoids the issue of
	whether a decimal fraction is represented exactly.)

unit definition element involves base unit

Necessity: Each unit definition element involves exactly one base unit.

unit definition element has exponent number

Necessity: Each <u>unit definition element</u> has exactly one exponent.

3 Conversions

Figure 3

unit conversion

Definition:	mathematical formula that relates measurement units in different systems of units
Note:	A unit conversion is modeled as a linear equation of the form:
	$unit_1 = factor * (unit_2 + offset_2) + offset_1.$
	where factor is a real number and each offset is a quantity value in the corresponding
	system of units.

unit conversion has result measurement unit

Inverse:	measurement unit has equivalent unit conversion
Definition:	The <u>unit conversion</u> defines the <u>measurement unit</u> in terms of a measurement unit
	(possibly derived) in another system of measurements.
Necessity:	Each unit conversion has exactly one result.
Possibility:	Each measurement unit has zero or more equivalents.

unit conversion has source measurement unit

Necessity: Each <u>unit conversion</u> has exactly one source.

unit conversion has source offset guantity value

Necessity:	Each unit conversion has at most one	source offset.
------------	--------------------------------------	----------------

unit conversion has result offset guantity value

Necessity: Each <u>unit conversion</u> has at most one result offset.