The RuleML Perspective on Deliberation-Reaction Standards

Adrian Paschke, Harold Boley, Tara Athan

In Ontolog RulesReasoningLP: Series Session 5
9 January 2014
Agenda

• Reaction RuleML
• Semantic Profiles
• Semantic Metamodel and External Ontologies (Semantic Sorts)
• Syntactic Customization
The RuleML Family

Reaction RuleML 1.0 Tutorial: http://www.slideshare.net/swadpasc/reaction-ruleml-ruleml2012paschketutorial

RuleML 1.0 Paper http://link.springer.com/chapter/10.1007/978-3-642-16289-3_15

Quick Overview: Reaction RuleML Dialects

* + variants and alternatives

- **Spatio-Temporal Derivation RuleML** *(if-then)*
 - Time, Spatial, Interval
- **KR RuleML** *(if-then or on-if-do)*
 - Situation, Happens[@type], Initiates, Terminates, Holds, fluent
- **Production RuleML** *(if-do)*
 - Assert, Retract, Update, Action
- **ECA RuleML** *(on-if-do)*
 - Event, Action, + (event / action algebra operators)
- **CEP** (arbitrary combination of *on, if, do*)
 - Receive, Send, Message
(Reaction) Rules: Specializable Syntax

```
<Rule @key @keyref @style>
  <meta> <!-- descriptive metadata of the rule --> </meta>
  <scope> <!-- scope of the rule e.g. a rule module --> </scope>
  <evaluation> <!-- intended semantics --> </evaluation>
  <signature> <!-- rule signature --> </signature>
  <qualification> <!-- e.g. qualifying rule metadata, e.g. priorities, validity, strategy --> </qualification>
  <quantification> <!-- quantifying rule declarations, e.g. variable bindings --> </quantification>
  <oid> <!-- object identifier --> </oid>
  <on> <!-- event part --> </on>
  <if> <!-- condition part --> </if>
  <then> <!-- (logical) conclusion part --> </then>
  <do> <!-- action part --> </do>
  <after> <!-- postcondition part after action, e.g. to check effects of execution --> </after>
  <else> <!-- (logical) else conclusion --> </else>
  <elsedo> <!-- alternative/else action, e.g. for default handling --> </elsedo>
</Rule>
```
Reaction RuleML – Example Rule Types

• **Derivation Rule:**

 (temporal/event/action/reasoning)

 `<Rule style="reasoning"`
 `<if>...</if>`
 `<then>...</then>`

 `</Rule>`

• **Production Rule:**

 `<Rule style="active"`
 `<if>...</if>`
 `<do>...</do>`

 `</Rule>`

• **Trigger Rule:**

 `<Rule style="active"`
 `<on>...</on>`
 `<do>...</do>`

 `</Rule>`

• **ECA Rule:**

 `<Rule style="active"`
 `<on>...</on>`
 `<if>...</if>`
 `<do>...</do>`

 `</Rule>`
Agenda

• Reaction RuleML

• Semantic Profiles

• Semantic Metamodel and External Ontologies (Semantic Sorts)

• Syntactic Customization
Integration of Semantic Profiles

1. Include/Import external Semantic Profile

```xml
<xi:include href="../../profiles/SituationCalculusProfile.rml" xpointer="xpointer(/RuleML/*/)">
  <evaluation>
    <Profile keyref="&ruleml;ReifiedClassicalSituationCalculus"/>
  </evaluation>
</xi:include>
```

2. Reference pre-defined Semantic Profile as profile type

```xml
<evaluation>
  <Profile type="&rif;RDFS" iri="http://www.w3.org/ns/entailment/RDFS"/>
</evaluation>
```

3.Locally defined Semantic Profile

```xml
<Assert>
  <evaluation>
    <Profile key="&ruleml;ReifiedClassicalSituationCalculus">
      <formula><Rulebase>… RuleML definition…</Rulebase></formula>
      <content>… xs:any XML content, e.g. RIF, Common Logic XML…</content>
    </Profile>
  </evaluation>
  <Rulebase>
    <Rule>…</Rule>
    <Rule>…</Rule>
  </Rulebase>
</Assert>
```

Reference published external semantic profiles, e.g. RIF, OWL, profiles …

Note: also other non RuleML content models are supported
Complex Event Processing – Semantic Profiles

(defined in <evaluation> semantic profiles)

1. Definition
 – Definition of event/action pattern e.g. by event algebra
 – Based on declarative formalization or procedural implementation
 – Defined over an atomic instant or an interval of time, events/actions, situation, transition etc.

2. Selection
 – Defines selection function to select one event from several occurred events (stored in an event instance sequence e.g. in memory, database/KB) of a particular type, e.g. “first”, “last”
 – Crucial for the outcome of a reaction rule, since the events may contain different (context) information, e.g. different message payloads or sensing information

3. Consumption
 – Defines which events are consumed after the detection of a complex event
 – An event may contribute to the detection of several complex events, if it is not consumed
 – Distinction in event messaging between “multiple receive” and “single receive”
 – Events which can no longer contribute, e.g. are outdated, should be removed

4. Execution
 – Actions might have an internal effect i.e. change the knowledge state leading to state transition from (pre-)condition state to post-condition state
 – The effect might be hypothetical (e.g. a hypothetical state via a computation) or persistent (update of the knowledge base),
 – Actions might have an external side effect
Example - Reaction Rules with Semantic Profiles

Interface
(semantic profile + event pattern signature for event processing / detection)

Implementation
(reaction rule triggered by event detection)

<Rule style="active">
<evaluation>
<Profile> e.g. selection and consumptions policies </Profile>
</evaluation>
<signature>
<Event key="#ce1">
... event pattern definition (for event detection)
</Event>
</signature>

<on>
<Event keyref="#ce1"/> <!-- use defined event pattern for detecting events -->
</on>

<if>
...
</if>
<do>
<Assert safety="transactional"> <!-- transactional update -->
<formula>
<Atom>
....
</Atom>
</formula>
</Assert>
</do>
</do>
</Rule>
A semantic SEM' extends a semantic SEM:

SEM' ⊇ SEM iff ∀ (P, F) SEM(P) |= F ⇒ SEM'(P) |= F
Example: Use of Semantic LP Profiles for Interpretation

--- rule interface with two alternative interpretation semantics and a signature.

The interface references the implementation identified by the corresponding key -->

```xml
<Rule key="#r1">
  <evaluation index="1">
    <!-- WFS semantic profile -->
    <Profile type="&ruleml;Well-Founded-Semantics" />
  </evaluation>

  <evaluation index="2">
    <!-- alternative ASS semantic profile define in the metamodel -->
    <Profile type="&ruleml;Answer-Set-Semantics" />
  </evaluation>

  <!-- the signature defines the queryable head of the backward-reasoning rule -->
  <signature>
    <Atom><Rel>likes</Rel><Var mode="+"/><Var mode="-"/></Atom>
  </signature>
</Rule>
```

Implemenation

Example: Use of Semantic LP Profiles for Interpretation

--- rule interface with two alternative interpretation semantics and a signature.

The interface references the implementation identified by the corresponding key -->

```xml
<Rule keyref="#r1" style="reasoning">
  <if>... </if>
  <then>
    <Atom><Rel>likes</Rel><Var X><Var Y></Atom>
  </then>
</Rule>
```
Test Cases for Self-validating Rule Bases

- Test Cases constrain the possible models and **approximate the intended models** of the rule base
 - **Queries** are used to test the rule base

A test case is defined by \(T := \{ X, A, N \} \), where
 - \(X \subseteq L \) assertion base (input data, e.g. facts)
 - \(A \in L \) a formula denoting a test query
 - \(N := +, - \) a positive or negative label

Semantics

\[
M_0 \models_{TC} (X, A, +) \text{ iff } \forall m \in M_0 : m \in \Sigma (\text{Mod}(X), R) \Rightarrow m \in \text{Mod}(A)
\]

\[
M_0 \models_{TC} (X, A, -) \text{ iff } \exists m \in M_0 : m \in \Sigma (\text{Mod}(X), R) \Rightarrow m \notin \text{Mod}(A)
\]

- \(\models_{TC} \) compatibility relation
- \(\Sigma \) model selection function

\(A \notin C_R(X) \) for \(T := \{ X, A, + \} \) and \(A \in C_R(X) \) for \(T := \{ X, A, - \} \)
- \(C_R(X) \) deductive closure of \(X \). Decidable inference operator based on formal proofs
Agenda

• Reaction RuleML
• Semantic Profiles

[Boxed Text]

• Semantic Metamodel and External Ontologies (Semantic Sorts)

• Syntactic Customization
RuleML Types (Sorted Logic)

- Types (sorts) can be assigned by using the \texttt{@type} attribute.
- External vocabularies / ontologies define types, e.g.,
 \begin{verbatim}
 <Var type="\&vo;Vehicle">Car</Var>
 <Ind iri="\&vo;Corolla" type="\&vo;Sedan"/>
 \end{verbatim}
- Semantics defined / linked by Semantic Profile, e.g. order-sorted logic using RDFS or OWL entailment profiles.
Reaction RuleML Examples with Types from RuleML Metamodel and External Ontologies

<Quantifier type="&ruleml;Forall"> == <Forall>
<Operator type="&ruleml;And"> == <And>
<Operator type="&ruleml;Conjunction"> == <Conjunction>
<Negation type="&ruleml;InflationaryNegation"> == <Naf>
<Action type="&ruleml;Assert"> == <Assert>
<Action type="&ruleml;Retract"> == <Retract>
<Event type="&ruleml;SimpleEvent"> == <Atom> ... </Atom>
<Event type="ibm:CommonBaseEvent"> == IBM CBE
<Operator type="snoop:Squence"> == Snoop Algebra
 == <Operator type="&ruleml;Sequence"> == <Sequence>
<Ind iri="person.xml#xpointer(/Person/LastName[1]/text())"/>
<Action iri="BPEL.xml#xpointer(/invoke[@name=checkHotel])">
Reaction RuleML Metamodel

Top Level Ontologies

General concepts such as space, time, event, action and their properties and relations

- Spatio Ontology
- Action Ontology
- Event Ontology
- Situation Ontology
- Process Ontology
- Agent Ontology

Vocabularies **related to specific domains** by specializing the concepts introduced in the top-level ontology

- Domain Ontologies

Vocabularies **related to generic tasks or activities** by specializing the concepts introduced in the top-level ontology

- Task Activities Ontologies

Specific user/application ontologies

- Application Ontologies

E.g. ontologies describing roles played by domain entities while performing application activities
Example - Event MetaModel
(for defining Event Types as Instances of the MetaModel Event Class)
Extended Event Meta Model Ontology
(with computational properties and complex value definitions)
Example - Typed Complex Event **Pattern** Definition

```
<Event key="#ce2" type="&ruleml;ComplexEvent">
  <signature> <!-- pattern signature definition -->
    <Sequence>
      <signature>
        <Event type="&ruleml;SimpleEvent">
          <signature><Event>...event_A...</Event></signature>
        </Event>
      </signature>
      <signature>
        <Event type="&ruleml;ComplexEvent" keyref="ce1"/>
      </signature>
      <signature>
        <Event type="cbe:CommonBaseEvent" iri="cbe.xml#xpointer(//CommonBaseEvent)"/>
      </signature>
    </Sequence>
  </signature>
</Event>

<Event key="#ce1" keyref="#ce2">
  <content>…</content>
</Event>
```
Agenda

• Reaction RuleML
• Semantic Profiles
• Semantic Metamodel and External Ontologies (Semantic Sorts)
• Syntactic Customization
RuleML Sublanguages Customized by MYNG as Relax NG Schemas

Selection Form

Instructions

Make a selection from the form below, then click "Refresh Schema" to update the Schema URL. The main module is also displayed below the form. To reset the form to the default (supremum) values, click "Reset Form".

Reset Form Refresh Schema

Schema URL = http://ruleml.org/1.0/relaxng/schema_rnc.php?backbone=x3f&default=x7&termseq=x7&lng=x1&propo=x3ff&implies=x7&terms=x73f&quant=x7&expr=x7&serial=x7

<table>
<thead>
<tr>
<th>Expressivity</th>
<th>Treatment of Attributes</th>
<th>Term Sequences: Number of Terms</th>
<th>Language (Check One)</th>
<th>Serialization Options (Check Zero or More)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Backbone"</td>
<td>With Default Values</td>
<td>(Check One)</td>
<td>(Check One)</td>
<td>(Check Zero or More)</td>
</tr>
<tr>
<td>(Check One)</td>
<td>(Check One)</td>
<td>(Check One)</td>
<td>(Check One)</td>
<td>(Check Zero or More)</td>
</tr>
<tr>
<td>Atomic Formulas</td>
<td>Required to be Absent</td>
<td>None</td>
<td>English Abbreviated Names</td>
<td>Unordered Groups</td>
</tr>
<tr>
<td>Ground Fact</td>
<td>Required to be Present</td>
<td>Binary (Zero or Two)</td>
<td>English Long Names</td>
<td>Stripe-Skipping</td>
</tr>
<tr>
<td>Ground Logic</td>
<td>Optional</td>
<td>Polyadic (Zero or More)</td>
<td>French Long Names</td>
<td>Explicit Datatyping</td>
</tr>
<tr>
<td>Datalog</td>
<td></td>
<td></td>
<td></td>
<td>Schema Location</td>
</tr>
<tr>
<td>Horn Logic</td>
<td></td>
<td></td>
<td></td>
<td>Attribute</td>
</tr>
<tr>
<td>Disjunctive Logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full First-Order Logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Fine grained syntactic language configuration (expressiveness) with MYNG (as Relax NG schemas)

• Intended semantics defined by Semantic Profiles
 – Semantic Test Cases for verification and validation

• Sorted Logic supports Types defined in external semantic ontologies and Meta Model vocabulary

• Towards joint standards for Deliberation, Reaction Rules
Thank you!

Questions?

Acknowledgement to the members of the Reaction RuleML technical group
RuleML Online Community

• RuleML MediaWiki (http://wiki.ruleml.org)
• Mailing lists (http://ruleml.org/mailman/listinfo)
• Technical Groups
 (http://wiki.ruleml.org/index.php/Organizational_Structure#Technical_Groups)
 – Uncertainty Reasoning
 – Defeasible Logic
 – Reaction Rules
 – Multi-Agent Systems
 – ...
• RuleML sources are hosted on Github
 (https://github.com/RuleML)
Further Reading – (Reaction) RuleML

 http://dx.doi.org/10.1007/978-3-642-16289-3_15

- Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian and Tara Athan: Reaction RuleML 1.0: Standardized Semantic Reaction Rules, 6th International Conference on Rules (RuleML 2012), Montpellier, France, August 27-31, 2012
 http://link.springer.com/chapter/10.1007%2F978-3-642-32689-9_9
 http://www.slideshare.net/swadpasc/reaction-ruleml-ruleml2012paschketutorial

- Adrian Paschke: Tutorial on Semantic Complex Event Processing and Reaction RuleML, at Dem@Care Summer School on Ambient Assisted Living, 16-20 September 2013, Chania, Crete, Greece
 http://www.slideshare.net/swadpasc/dem-aal-semanticceppaschke

 http://www.igi-global.com/chapter/rule-markup-languages-semantic-web/35852

 http://www.igi-global.com/book/handbook-research-emerging-rule-based/465

- Adrian Paschke and Harold Boley: Rule Responder: Rule-Based Agents for the Semantic-Pragmatic Web, in Special Issue on Intelligent Distributed Computing in International Journal on Artificial Intelligence Tools (IJAIT), Vol. 20,6, 2011
 https://www.researchgate.net/publication/220160498