WGSigma Systems

Architecting intelligent real-time systems processing billions of events a day

William Guinn
SVP and CTO
San Jose, CA
william.guinn@wgsigmasystems.com

The Universal Corporate Challenge:

Hundreds or thousands of systems

performing transactions in silos with no
collective intelligence

About 20% of the Customer Systems in a large Telco

Real Time Intelligence for Large Scale Environments

The Goal:

Create a collective knowledge of the operation where processing decisions are holistically optimized

....Patients

....Customers

...Subscribers

....Account Holders

Closed Loop Event – Condition – Action

Inferencing

Semantic Concept Model

Defines concepts and meaning Defines relationships between concepts

Semantic model capabilities

reasoning

Machine learning trained models

BBN probabilistic model Recommendation model Other Machine learning algorithms

Inference Engine and Business Rules

Bayesian Belief Network

Business policy Rules

Event Cre

Create semantic concepts from events

Concept Action Define a custom business

concept

A set of custom rules actioning business

policy

Semantic Concept Model

The model defines the concepts including the high level business concepts

The model contains the relationship between concepts including the dependencies

Inference

When an event occurs the event handler rule fires for that event

Evaluates the event message

Evaluates the existing ontology

Determines which semantic instances to create or update

When any data changes, the inference engine fires in a "When - Then" style of computing, updating all "Automatic" concepts. Custom concept rules are fired if necessary. This creates a chain of updates

When a "on demand" concept is needed the inference engine finds and computes all of the dependant concepts

Machine learning

When a concept is dependent on "machine learned" information the inference engine manages the invocation and timing of interfacing

Use Case: Customer Interaction Prediction and Best Action

Scalability & Resilience

- Use in memory elastic data grid
 - New hardware nodes can be added and removed dynamically
 - Data is replicated to one other node (no single point of failure)
 - If a server fails, the backup becomes the primary seamlessly
- Partition grid across objects
- Graphs are partitioned across multiple triple store instances
 - A single index instance defines the location of each graph
- Historical data is subdivided into graphs by timeframe (e.g. quarters)

Make it Business Friendly

Technology Stack

Technology	Purpose
TopBraid Composer	Ontology Modeling
Java	Event Pipeline, Decision Engine, Integrations
R	Statistical and Predictive Modeling
ETL	Event ingestion - Extract, Transform, Mapping Relational to Graph
Red Hat BPMS & Drools	Forward and backward chaining rules, process definition and control
Red Hat HornetQ	JMS Queue persistent multi-threaded input and output (publish-subscribe)
Gigaspaces	Data Grid
Apache UIMA + Solr	Natural Language Processing, Semantic Searches, Content Analytics
Norsys Netica	BBN
Franz Allegrograph	Triple Store (RDFS)
Apache Cassandra	Time series data store