
Modeling with Rules in Practice

Héctor Pérez-Urbina
Clark & Parsia, LLC

hector@clarkparsia.com

Clark & Parsia

● Specializes in Semantic Web, Web services,
and advanced AI technologies for federal and
enterprise customers

● Software development and integration
services

● Software products for end-user and OEM use

1

Rules rule!

● Many of our customers prefer rules over
axioms

● Sometimes axioms are not sufficiently
expressive or expressive in the right way

2

Working with Rules

3

Why is the syntax so verbose?

4

<swrl:Variable rdf:about="urn:swrl#parent" />
<swrl:Variable rdf:about="urn:swrl#child"/>
<swrl:Imp>

<swrl:head>
<swrl:AtomList>

<rdf:rest rdf:resource="&rdf;nil"/>
<rdf:first>

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="http://www.

example.org#hasFather" />
<swrl:argument1 rdf:resource="urn:swrl#child"/>
<swrl:argument2 rdf:resource="urn:swrl#parent"/>

</swrl:IndividualPropertyAtom>
</rdf:first>

</swrl:AtomList>
...

PREFIX :<http://www.example.org#>

IF {
?x :hasParent ?y.
?y rdf:type :Male.

}
THEN {

?x :hasFather :?y.
}

IF-THEN Syntax

5

PREFIX :<http://www.example.org#>

:hasParent(?child, ?parent), :Male(?parent)

->

:hasFather(?child, ?parent).

Datalog Syntax

6

@prefix rule: <http://rule.stardog.com/> .

[] a rule:SPARQLRule ;
rule:content "

PREFIX :<http://www.example.org#>
IF {

?x :hasParent ?y.
?y rdf:type :Male.

}
THEN {

?x :hasFather :?y.
}

" .

IF-THEN Syntax

7

@prefix rule: <http://rule.stardog.com/> .

[] a rule:SPARQLRule ;
rule:content "

PREFIX :<http://www.example.org#>

:hasParent(?child, ?parent), :Male(?parent)

->

:hasFather(?child, ?parent).
" .

Datalog Syntax

8

Is Protégé the only option?

9

Understanding Rules

10

So, I’m not in QL anymore?

● OWL profiles intended for tractability
● Rules can quickly take you out of a profile

:hasParent(?child, ?parent), :Male(?parent)

->

:hasFather(?child, ?parent).

11

How can I create new individuals?

● Axioms can infer the existence of some
unnamed individuals
:Father rdfs:subClassOf :hasChild some owl:Thing.

● Can SWRL help me to create new named
individuals?
:Father(?father)

->

:hasChild(?father, ?child).

12

How can I create new individuals?

:Father(?father), BIND(UUID() as ?child)

->

:hasChild(?father, ?child).

:Father(?father), BIND(UUID() as ?child)

->

:hasChild(?father, ?child), Child(?child).

13

Reasoning with Rules

14

When does a rule fire?

:hasParent(?child, ?parent), :Male(?parent)
-> hasFather(?child, ?parent).

:HectorSr :hasParent :Jose.

:Jose rdf:type :Male.

:Hector :hasFather :HectorSr.

15

Materialization

:hasParent(?child, ?parent), :Male(?parent)
-> :hasFather(?child, ?parent).

:HectorSr :hasParent :Jose.

:Jose a :Male.

:Hector :hasFather :HectorSr.

:HectorSr :hasFather :Jose.

16

Query Answering

SELECT ?father WHERE {

?child :hasFather ?father.

}

{?father -> :Jose, ?father -> :HectorSr}

17

Query Rewriting

SELECT ?father WHERE {

?child :hasFather ?father. }

:hasParent(?child, ?parent), :Male(?parent) -> :hasFather
(?child, ?parent).

SELECT ?father WHERE {

{ ?child :hasFather ?father. }

UNION

{ ?child :hasParent ?father.

 ?father a :Male. }

}

18

Query Answering
SELECT ?father WHERE {

{ ?child :hasFather ?father. }

UNION

{ ?child :hasParent ?father.

 ?father a :Male. }

}

:HectorSr :hasParent :Jose.

:Jose rdf:type :Male.

:Hector :hasFather :HectorSr.

{?father -> :Jose, ?father -> :HectorSr}

19

Other Issues

20

● Logarithms
○ stardog:log

○ stardog:ln

● Trigonometric Functions
○ stardog:atan

○ stardog:asin

○ ...

● Degrees and Radians
○ stardog:toDegrees

○ stardog:toRadians

SWRL Built-Ins are not enough

21

Thank you!

22

