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Constraint Logic Programming

In Prolog seen as a CLP language, a clause such as:

append([],L,L).

append([H|T],L,[H|R]) :- append(T,L,R).

is construed as:

append(X1,X2,X3) :- true

| X1 = [], X2 = L, X3 = L.

append(X1,X2,X3) :- append(X4,X5,X6)

| X1 = [H|T], X2 = L, X3 = [H|R],

X4 = T, X5 = L, X6 = R.
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Constraint Logic Programming Scheme

The CLP scheme requires a set R of relational symbols (or,

predicate symbols) and a constraint language L.

The constraint language L needs very little

—(not even syntax!):

◮ a set V of variables (denoted as capitalized X,Y, . . .);

◮ a set Φ of formulae (denoted φ, φ′, . . .) called constraints;

◮ a function VAR: Φ 7→ V , giving for every constraint φ the

set VAR(φ) of variables constrained by φ;

◮ a family of interpretations A over some domain DA;

◮ a set VAL(A) of valuations—total functions α : V 7→ DA.
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Constraint Logic Programming Language

Given a set of relational symbols R (r, r1, . . .), a constraint

language L is extended into a language R(L) of constrained

relational clauses with:

◮ the set R(Φ) of formulae defined to include:

– all formulae φ in Φ, i.e., all L-constraints;

– all relational atoms r(X1, . . . , Xn),
where X1, . . . , Xn ∈ V are mutually distinct;

and closed under & (conjunction) and→ (implication);

◮ extending an interpretation A of L by adding relations:

rA ⊆ DA × . . .×DA for each r ∈ R.
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Constraint Logic Programming Clause

We define a CLP constrained definite clause in R(L) as:

r( ~X) ← r1( ~X1) & . . . & rm( ~Xm) [] φ,

where (0 ≤ m) and:

◮ r( ~X), r1( ~X1), . . . , rm( ~Xm) are relational atoms inR(L); and,

◮ φ is a constraint formula in L.

A constrained resolvent is a formula ̺ [] φ, where ̺ is

a (possibly empty) conjunction of relational atoms r(X1, . . . , Xn)—
its relational part—and φ is a (possibly empty) conjunction of L-

constraints—its constraint part.
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Constraint Logic Programming Resolution

Constrained resolution is a reduction rule on resolvents that

gives a sound and complete interpreter for programs consist-

ing of a set C of constrained definite R(L)-clauses.

The reduction of a constrained resolvent of the form:

B1 & . . . & r(X1, . . . , Xn) & . . . Bk [] φ

by the (renamed) program clause:

r(X1, . . . , Xn)← A1 & . . . & Am [] φ′

is the new constrained resolvent of the form:

B1 & . . . & A1 & . . . & Am & . . . Bk [] φ & φ′.
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Why Constraints?

Some important points:

◮ But... wait a minute: “Constraints are logical formulae—so

why not use only logic?”

Indeed, constraints are logical formulae—and that is good!

But such formulae as factors in a conjunction commute

with other factors, thus freeing operational scheduling of

resolvents.

◮ A constraint is a formula solvable by a specific solving

algorithm rather than general-purpose logic-programming

machinery.

◮ Better: constraint solving remembers proven facts (proof

memoizing).

Such are key points exploited in CLP!
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Constraint Solving—Constraint Normalization

Constraint solving is conveniently specified using constraint

normalization rules, which are semantics-preserving syntax-

driven rewrite (meta-)rules.

Plotkin’s SOS notation:

(n) Rule Name

Prior Form

Posterior Form

if Condition

A normalization rule is said to be correct iff the prior form’s

denotation is equal to the posterior form’s whenever the side

condition holds.
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Constraint Normalization—Declarative Coroutining

Normalizing a constraint yields a normal form: a constraint

formula that can’t be transformed by any normalization rule.

Such may be either the inconsistent constraint ⊥, or:

◮ a solved form—a normal form that can be immediately

deemed consistent; or,

◮ a residuated form—a normal form but not a solved form.

A residuated constraint is a suspended computation; shared

variables are inter-process communication channels: bind-

ing in one normalization process may trigger resumption of

another residuated normalization process.

Constraint residuation enables automatic coroutining!
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What is unification?—First-order terms

The set TΣ,V of first-order terms is defined given:

◮ V a countable set of variables;

◮ Σn sets of constructors of arity n (n ≥ 0);

◮ Σ = ∪n≥0Σn the constructor signature.

Then, a first-order term (FOT) is either:

◮ a variable in V ; or,

◮ an element of Σ0; or,

◮ an expression of the form f (t1, . . . , tn),
where n > 0, f ∈ Σn, and ti is a FOT, for all i ≥ 1.

Examples of FOTs: X a f (g(X, a), Y, h(X))
(variables are capitalized as in Prolog).
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What is unification?—Substitutions & instances

A variable substitution is a map σ : V → TΣ,V such that the

set {X ∈ V | σ(X) 6= X} is finite.

Given a substitution σ and a FOT t, the σ-instance of t is the

FOT:

tσ =







σ(X) if t = X ∈ V ;

a if t = a ∈ Σ0;

f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn).

Unification is the process of solving an equation of the form:

t
.
= t′
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What is unification?—FOT equation solving

A solution, if one exists, is any substitution σ such that:

tσ = t′σ

If solutions exist, there is always a minimal solution (the

most general unifier ): mgu(t, t′).

where: “σ1 is more general than σ2” iff ∃σ s.t. σ2 = σ1σ

Equation and solution example:

f (g(X, b), X, g(h(X), Y ))
.
= f (g(U,U), b, g(V, a))

X
.
= b, Y

.
= a, U

.
= b, V

.
= h(b)
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What is unification?—Algorithms

FOT unification algorithms have been (re-)invented:

◮ J. Herbrand (PhD thesis—page 148, 1930)

◮ J.A. Robinson (JACM 1965)

◮ A. Martelli & U. Montanari (ACM TOPLAS 1982)

But, rather than a monolithic algorithm, FOT unification is

simply expressible as a set of syntax-driven commutative
and terminating constraint normalization rules!
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What is unification?—Constraint normalization rules

(1) Substitute

φ & X
.
= t

φ[X/t] & X
.
= t

if X occurs in φ

(2) Decompose

φ & f(s1, . . . , sn)
.
= f(t1, . . . , tn)

φ & s1
.
= t1 & . . . & sn

.
= tn

if f ∈ Σn, (n ≥ 0)

(3) Fail

φ & f(s1, . . . , sn)
.
= g(t1, . . . , tm)

⊥

if f ∈ Σn, (n ≥ 0)
and g ∈ Σm, (m ≥ 0)
and m 6= n
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What is unification?—Constraint normalization rules

(4) Flip

φ & t
.
= X

φ & X
.
= t

if X ∈ V
and t 6∈ V

(5) Erase

φ & t
.
= t

φ
if t ∈ Σ0 ∪ V

(6) Cycle

φ & X
.
= t

⊥

if X ∈ V
and t 6∈ V
and X occurs in t
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Semantic Web objects—Objects are labelled graphs!
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Semantic Web objects—Objects are labelled graphs!

JohnDoe35 : marriedPerson ( name => fullName

( first => "John"

, last => "Doe" )

, age => 42

, address => DoeResidence

, spouse => JaneDoe78

, isVoter => true

)
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Semantic Web objects—Objects are labelled graphs!

JaneDoe78 : marriedPerson ( name => fullName

( first => "Jane"

, last => "Doe" )

, age => 40

, address => DoeResidence

, spouse => JohnDoe35

, isVoter => false

)

DoeResidence : streetAddress ( number => 123

, street => "Main Street"

, city => "Sometown"

, country => "USA"

)
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Semantic Web types—Types are labelled graphs!
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Semantic Web types—Types are labelled graphs!

M1 : marriedPerson ( name => fullName

( first => string

, last => string )

, age => int

, address => R

, spouse => M2

, isVoter => boolean

)
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Semantic Web formalisms—Types are labelled graphs!

M2 : marriedPerson ( name => string

( first => string

, last => string )

, age => int

, address => R

, spouse => M1

, isVoter => boolean

)

R : streetAddress ( number => int

, street => string

, city => string

, country => string

)
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Original motivation: Formalize this?—ca. 1982
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Graphs as constraints—Motivation

◮ What: a formalism for representing objects that is:

intuitive (objects as labelled graphs), expressive (“real-life” data

models), formal (logical semantics), operational (executable), &

efficient (constraint-solving)

◮ Why? viz., ubiquitous use of labelled graphs to structure

information naturally as in:

– object-orientation, knowledge representation,

– databases, semi-structured data,

– natural language processing, graphical interfaces,

– concurrency and communication,

– XML, RDF, the “Semantic Web,” etc., ...



28

Graphs as constraints—History

Viewing graphs as constraints stems from the work of:

◮ Hassan Aı̈t-Kaci (since 1983)

◮ Gert Smolka (since 1986)

◮ Andreas Podelski (since 1989)

◮ Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele,

Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred

Schmidt-Schauß, Remi Zajac, . . .
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Graphs as constraints—Inheritance as graph endomorphism

person id
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Graphs as constraints—Inheritance as graph endomorphism
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Graphs as constraints—OSF term syntax

Let V be a countable set of variables, and S a lattice of sorts.

An OSF term is an expression of the form:

X : s(ℓ1 ⇒ t1, . . . , ℓn ⇒ tn)

where:

◮ X ∈ V is the root variable

◮ s ∈ S is the root sort

◮ n ≥ 0 (if n = 0, we write X : s)

◮ {ℓ1, . . . , ℓn} ⊆ F are features

◮ t1, . . . , tn are OSF terms
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Graphs as constraints—OSF term syntax example

X : person(name⇒ N : ⊤(first⇒ F : string),
name⇒M : id(last⇒ S : string),
spouse⇒ P : person(name⇒ I : id(last⇒ S : ⊤),

spouse⇒ X : ⊤)).

Lighter notation (showing only shared variables):

X : person(name⇒ ⊤(first⇒ string),
name⇒ id(last⇒ S : string),
spouse⇒ person(name⇒ id(last⇒ S),

spouse⇒ X)).
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Graphs as constraints—OSF clause syntax

An OSF constraint is one of:

◮ X : s

◮ X.ℓ
.
= X ′

◮ X
.
= X ′

where X (X ′) is a variable (i.e., a node), s is a sort (i.e., a

node’s type), and ℓ is a feature (i.e., an arc).

An OSF clause is a conjunction of OSFconstraints—i.e., a

set of OSF constraints

φ1 & . . . & φn
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Graphs as constraints—From OSF terms to OSF clauses

An OSF term t = X : s(ℓ1 ⇒ t1, . . . , ℓn ⇒ tn) is dissolved

into an OSF clause φ(t) as follows:

ϕ(t)
DEF

== X : s & X.ℓ1
.
= X1 & . . . & X.ℓn

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)

where X1, . . . , Xn are the root variables of t1, . . . , tn.



35

Graphs as constraints—Example of OSF term dissolution

t = X : person(name⇒ N : ⊤(first⇒ F : string),
name⇒M : id(last⇒ S : string),
spouse⇒ P : person(name⇒ I : id(last⇒ S : ⊤),

spouse⇒ X : ⊤))

ϕ(t) = X : person & X. name
.
= N & N : ⊤

& X. name
.
= M & M : id

& X. spouse
.
= P & P : person

& N . first
.
= F & F : string

& M. last
.
= S & S : string

& P . name
.
= I & I : id

& I . last
.
= S & S : ⊤

& P . spouse
.
= X & X : ⊤
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Graphs as constraints—Basic OSF term normalization

(1) Sort Intersection

φ & X : s & X : s′

φ & X : s ∧ s′

(2) Inconsistent Sort

φ & X : ⊥

X : ⊥

(3) Variable Elimination

φ & X
.
= X ′

φ[X ′/X ] & X
.
= X ′

if X 6= X ′

and X ∈ Var(φ)

(4) Feature Functionality

φ & X.ℓ
.
= X ′ & X.ℓ

.
= X ′′

φ & X.ℓ
.
= X ′ & X ′

.
= X ′′
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Graphs as constraints—OSF unification as OSF constraint normalization

person

student employee

staff faculty

intern

bob piotr pablo simon elena art judy don john sheila
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Graphs as constraints—OSF unification as OSF constraint normalization

X : student

(roommate => person(rep => E : employee),

advisor => don(secretary => E))

&

Y : employee

(advisor => don(assistant => A),

roommate => S : student(rep => S),

helper => simon(spouse => A))

&

X = Y
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Graphs as constraints—OSF unification as OSF constraint normalization

X : intern

(roommate => S : intern(rep => S),

advisor => don(assistant => A,

secretary => S),

helper => simon(spouse => A))

&

X = Y

&

E = S
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Graphs as constraints—Extended OSF terms

Basic OSF terms may be extended to express:

◮ Non-lattice sort signatures

◮ Disjunction

◮ Negation

◮ Partial features

◮ Extensional sorts (i.e., denoting elements)

◮ Relational features (a.k.a., “roles”)

◮ Aggregates (à la monoid comprehensions)

◮ Regular-expression feature paths

◮ Sort definitions (a.k.a., “OSF theories”—“ontologies”)
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Order-sorted featured graph constraints—(Summary)

We have overviewed a formalism of objects where:

◮ “real-life” objects are viewed as logical constraints

◮ objects may be approximated as set-denoting constructs

◮ object normalization rules provide an efficient operational

semantics

◮ consistency extends unification (and thus matching)

◮ this enables rule-based computation (whether rewrite or

logical rules) over general graph-based objects

◮ this yield a powerful means for effectively using ontologies



42

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation



43

Semantic Web formalisms—OWL speaks

What language(s) do OWL’s speak?—a confusing growing

crowd of strange-sounding languages and logics:

• OWL, OWL Lite, OWL DL, OWL Full

• DL, DLR, . . .

• AL, ALC, ALCN , ALCNR, . . .

• SHIF , SHIN , CIQ, SHIQ, SHOQ(D), SHOIQ, SRIQ,

SROIQ, . . .

Depending on whether the system allows:

• concepts, roles (inversion, composition, inclusion, . . . )

• individuals, datatypes, cardinality constraints

• various combination thereof



44

Semantic Web formalisms—DL dialects

For better or worse, the W3C has married its efforts to DL-

based reasoning systems:

◮ All the proposed DL Knowledge Base formalisms in the

OWL family use tableaux-based methods for reasoning

◮ Tableaux methods work by building models explicitly via

formula expansion rules

◮ This limits DL reasoning to finite (i.e., decidable) models

◮ Worse, tableaux methods only work for small ontologies:

they fail to scale up to large ontologies
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Semantic Web formalisms—DL dialects

Tableaux style DL reasoning (ALCNR)

CONJUNCTIVE CONCEPT:

[

if x : (C1 ⊓ C2) ∈ S

and {x : C1, x : C2} 6⊆ S

]

S

S ∪ {x : C1, x : C2}

DISJUNCTIVE CONCEPT:

[

if x : (C1 ⊔ C2) ∈ S

and x : Ci 6∈ S (i = 1, 2)

]

S

S ∪ {x : Ci}

UNIVERSAL ROLE:





if x : (∀R.C) ∈ S

and y ∈ RS [x]
and y : C 6∈ S





S

S ∪ {y : C}

EXISTENTIAL ROLE:





if x : (∃R.C) ∈ S s.t. R
DEF
==

( dm

i=1
Ri

)

and z : C ∈ S ⇒ z 6∈ RS [x]
and y is new





S

S ∪ {xRiy}
m
i=1 ∪ {y : C}

MIN CARDINALITY:





if x : (≥ n.R) ∈ S s.t. R
DEF
==

( dm

i=1
Ri

)

and |RS [x]| 6= n

and yi is new (0 ≤ i ≤ n)





S

S ∪ {xRiyj}
m,n
i,j=1,1

∪ {yi 6
.
= yj}1≤i<j≤n

MAX CARDINALITY:





if x : (≤ n.R) ∈ S

and |RS [x]| > n and y, z ∈ RS [x]
and y 6

.
= z 6∈ S





S

S ∪ S[y/z]
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Understanding OWL speak—OSF vs. DL

Understanding OWL amounts to reasoning with knowledge

expressed as OWL sentences. Its DL semantics relies on

explicitly building models using induction.

ergo:

Inductive techniques are eager and (thus) wasteful

Reasoning with knowledge expressed as constrained (OSF)

graphs relies on implicitly pruning inconsistent elements us-

ing coinduction.

ergo:

Coinductive techniques are lazy and (thus) thrifty
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LIFE—Rules + constraints for Semantic Web reasoning

LIFE—Logic, Inheritance, Functions, and Equations

CLP(χ)—Constraint, Logic, Programming, parameterized over

is a constraint system χ

LIFE is a CLP system over OSF constraints and functions

over them (rewrite rules); namely:

LIFE = CLP(OSF + FP)
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LIFE—Rules + constraints for Semantic Web reasoning

adultPerson

employee marriedPerson

richemployee marriedEmployee

A multiple-inheritance hierarchy
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The same hierarchy in Java

interface adultPerson {
name id;

date dob;

int age;

String ssn;

}
interface employee extends adultPerson {

title position;

String institution;

employee supervisor;

int salary;

}
interface marriedPerson extends adultPerson {

marriedPerson spouse;

}
interface marriedEmployee extends employee, marriedPerson {
}
interface richEmployee extends employee {
}
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The same hierarchy in LIFE

employee <: adultPerson.
marriedPerson <: adultPerson.
richEmployee <: employee.
marriedEmployee <: employee.
marriedEmployee <: marriedPerson.

:: adultPerson ( id ⇒ name

, dob ⇒ date

, age ⇒ int

, ssn ⇒ string ).

:: employee ( position ⇒ title

, institution ⇒ string

, supervisor ⇒ employee

, salary ⇒ int ).

:: marriedPerson ( spouse ⇒ marriedPerson ).
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A relationally and functionally constrained LIFE sort hierarchy

:: P : adultPerson ( id ⇒ name

, dob ⇒ date

, age ⇒ A : int
, ssn ⇒ string )

| A = ageInYears(P ), A ≥ 18.

:: employee ( position ⇒ T : title
, institution ⇒ string

, supervisor ⇒ E : employee
, salary ⇒ S : int )

| higherRank(E.position, T ) , E.salary ≥ S.
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A relationally and functionally constrained LIFE sort hierarchy

:: M : marriedPerson ( spouse ⇒ P : marriedPerson )

| P.spouse = M.

:: R : richEmployee ( institution ⇒ I
, salary ⇒ S )

| stockValue(I) = V , hasShares(R, I,N) , S + N ∗ V ≥ 200000.
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Proof “memoizing”

OSF constraints as syntactic variants of logical formulae:

Sorts are unary predicates: X : s ⇐⇒ [[s]]([[X ]])

Features are unary functions: X.f
.
= Y ⇐⇒ [[f ]]([[X ]]) = [[Y ]]

Coreferences are equations: X
.
= Y ⇐⇒ [[X ]] = [[Y ]]

So . . .

Why not use (good old) logic proofs instead?
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Proof “memoizing”

But: model equivalence 6= proof equivalence!

◮OSF-unification proves sort constraints by reducing them

monotonically w.r.t. the sort ordering

◮ ergo, once X : s has been proven, the proof of s(X) is

recorded as the sort “s” itself!

◮ if further down a proof, it is again needed to prove X : s, it

is remembered as X ’s binding

◮ Indeed, OSF constraint proof rules ensure that:

no type constraint is ever proved twice
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Proof “memoizing”

OSF type constraints are incrementally “memoized” as they

are verified:

sorts act as (instantaneous!) proof caches!

whereas in logic having proven s(X) is not “remembered” in

any way (e.g., Prolog)

Example: consider the OSF constraint conjunction:

•X : adultPerson(age ⇒ 25),

•X : employee,

•X : marriedPerson(spouse ⇒ Y ).

Notation: type#(condition) means “constraint condition

attached to sort type”



57

Proof “memoizing”—Example hierarchy reminded

adultPerson

employee marriedPerson

richEmployee marriedEmployee
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Proof “memoizing”

1. proving: X : adultPerson(age ⇒ 25) . . .

2. proving: adultPerson#(X.age ≥ 18) . . .

3. proving: X : employee . . .

4. proving: employee#(higherRank(E.position, P )) . . .

5. proving: employee#(E.salary ≥ S) . . .

6. proving: X : marriedPerson(spouse ⇒ Y ) . . .

7. proving: X : marriedEmployee(spouse ⇒ Y ) . . .

8. proving: marriedEmployee#(Y.spouse = X) . . .

Therefore, all other inherited conditions coming from a

sort greater than marriedEmployee (such as employee or

adultPerson) can be safely ignored!
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Proof “memoizing”

This “memoizing” property ofOSF constraint-solving enables:

using rules over ontologies

as well as, conversely ,

enhancing ontologies with rules

Indeed, with OSF :

◮ concept ontologies may be used as constraints by

rules for inference and computation

◮ rule-based conditions in concept definitions may be

used to magnify expressivity of ontologies thanks to the

proof-memoizing property of ordered sorts
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Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation
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Recapitulation—what you must remember from this talk. . .

◮ Objects are graphs

◮ Graphs are constraints

◮ Constraints are good : they provide both formal theory

and efficient processing

◮ Formal Logic is not all there is

◮ even so: model theory 6= proof theory

◮ indeed, due to its youth, much of W3C technology is often

naı̈ve in conception and design

Ergo. . . it is condemned to reinventing [square!] wheels

as long as it does not realize that such issues have been

studied in depth for the past 50 years in theoretical CS!
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Recapitulation—what you must remember from this talk. . . (ctd)

Pending issues re. “ontological programming”
◮ Syntax :

– What’s essential?

– What’s superfluous?

Confusing notation : XML-based cluttered verbosity

ok, not for human consumption—but still!

◮ Semantics:

– What’s a model good for?

– What’s (efficiently) provable?

– decidable 6= efficient

– undecidable 6= inefficient

◮ Applications, maintenance, evolution, etc., ...
◮ Many, many, publications... but no (real) field testing as

yet!



63

Recapitulation—what you must remember from this talk. . . (ctd)

Proposal: take heed of the following facts:

◮ Linked data represents all information as interconnected

sorted labelled RDF graphs—it has become a universal

de facto knowledge model standard

◮ Differences between DL and OSF can come handy:

– DL is expansive—therefore, expensive—and can only

describe finitely computable sets; whereas,

–OSF is contractive—therefore, efficient—and can also

describe recursively-enumerable sets

◮ CLP-based graph unification reasoning = practical KR:

– structural: objects, classes, inheritance

– non-structural: path equations, relational constraints,

type definitions
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Innovation takes courage. . . (from Martin Wildberger’s “Smarter Planet” Keynote, CASCON 2009)

If I’d asked my customers what they wanted,

they’d have said a faster horse!—Henry Ford
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Thank You For Your Attention !

For more information:

hak@acm.org

http://cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

http://cedar.liris.cnrs.fr
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