
Reasoning and the Semantic Web

Hassan Aı̈t-Kaci

ANR Chair of Excellence

Université Claude Bernard Lyon 1

Constraint Event-Driven Automated Reasoning Project

C E D A R

1

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

2

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

3

Constraint Logic Programming

In Prolog seen as a CLP language, a clause such as:

append([],L,L).

append([H|T],L,[H|R]) :- append(T,L,R).

is construed as:

append(X1,X2,X3) :- true

| X1 = [], X2 = L, X3 = L.

append(X1,X2,X3) :- append(X4,X5,X6)

| X1 = [H|T], X2 = L, X3 = [H|R],

X4 = T, X5 = L, X6 = R.

4

Constraint Logic Programming Scheme

The CLP scheme requires a set R of relational symbols (or,

predicate symbols) and a constraint language L.

The constraint language L needs very little

—(not even syntax!):

◮ a set V of variables (denoted as capitalized X,Y, . . .);

◮ a set Φ of formulae (denoted φ, φ′, . . .) called constraints;

◮ a function VAR: Φ 7→ V , giving for every constraint φ the

set VAR(φ) of variables constrained by φ;

◮ a family of interpretations A over some domain DA;

◮ a set VAL(A) of valuations—total functions α : V 7→ DA.

5

Constraint Logic Programming Language

Given a set of relational symbols R (r, r1, . . .), a constraint

language L is extended into a language R(L) of constrained

relational clauses with:

◮ the set R(Φ) of formulae defined to include:

– all formulae φ in Φ, i.e., all L-constraints;

– all relational atoms r(X1, . . . , Xn),
where X1, . . . , Xn ∈ V are mutually distinct;

and closed under & (conjunction) and→ (implication);

◮ extending an interpretation A of L by adding relations:

rA ⊆ DA × . . .×DA for each r ∈ R.

6

Constraint Logic Programming Clause

We define a CLP constrained definite clause in R(L) as:

r(~X) ← r1(~X1) & . . . & rm(~Xm) [] φ,

where (0 ≤ m) and:

◮ r(~X), r1(~X1), . . . , rm(~Xm) are relational atoms inR(L); and,

◮ φ is a constraint formula in L.

A constrained resolvent is a formula ̺ [] φ, where ̺ is

a (possibly empty) conjunction of relational atoms r(X1, . . . , Xn)—
its relational part—and φ is a (possibly empty) conjunction of L-

constraints—its constraint part.

7

Constraint Logic Programming Resolution

Constrained resolution is a reduction rule on resolvents that

gives a sound and complete interpreter for programs consist-

ing of a set C of constrained definite R(L)-clauses.

The reduction of a constrained resolvent of the form:

B1 & . . . & r(X1, . . . , Xn) & . . . Bk [] φ

by the (renamed) program clause:

r(X1, . . . , Xn)← A1 & . . . & Am [] φ′

is the new constrained resolvent of the form:

B1 & . . . & A1 & . . . & Am & . . . Bk [] φ & φ′.

8

Why Constraints?

Some important points:

◮ But... wait a minute: “Constraints are logical formulae—so

why not use only logic?”

Indeed, constraints are logical formulae—and that is good!

But such formulae as factors in a conjunction commute

with other factors, thus freeing operational scheduling of

resolvents.

◮ A constraint is a formula solvable by a specific solving

algorithm rather than general-purpose logic-programming

machinery.

◮ Better: constraint solving remembers proven facts (proof

memoizing).

Such are key points exploited in CLP!

9

Constraint Solving—Constraint Normalization

Constraint solving is conveniently specified using constraint

normalization rules, which are semantics-preserving syntax-

driven rewrite (meta-)rules.

Plotkin’s SOS notation:

(n) Rule Name

Prior Form

Posterior Form

if Condition

A normalization rule is said to be correct iff the prior form’s

denotation is equal to the posterior form’s whenever the side

condition holds.

10

Constraint Normalization—Declarative Coroutining

Normalizing a constraint yields a normal form: a constraint

formula that can’t be transformed by any normalization rule.

Such may be either the inconsistent constraint ⊥, or:

◮ a solved form—a normal form that can be immediately

deemed consistent; or,

◮ a residuated form—a normal form but not a solved form.

A residuated constraint is a suspended computation; shared

variables are inter-process communication channels: bind-

ing in one normalization process may trigger resumption of

another residuated normalization process.

Constraint residuation enables automatic coroutining!

11

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

12

What is unification?—First-order terms

The set TΣ,V of first-order terms is defined given:

◮ V a countable set of variables;

◮ Σn sets of constructors of arity n (n ≥ 0);

◮ Σ = ∪n≥0Σn the constructor signature.

Then, a first-order term (FOT) is either:

◮ a variable in V ; or,

◮ an element of Σ0; or,

◮ an expression of the form f (t1, . . . , tn),
where n > 0, f ∈ Σn, and ti is a FOT, for all i ≥ 1.

Examples of FOTs: X a f (g(X, a), Y, h(X))
(variables are capitalized as in Prolog).

13

What is unification?—Substitutions & instances

A variable substitution is a map σ : V → TΣ,V such that the

set {X ∈ V | σ(X) 6= X} is finite.

Given a substitution σ and a FOT t, the σ-instance of t is the

FOT:

tσ =

σ(X) if t = X ∈ V ;

a if t = a ∈ Σ0;

f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn).

Unification is the process of solving an equation of the form:

t
.
= t′

14

What is unification?—FOT equation solving

A solution, if one exists, is any substitution σ such that:

tσ = t′σ

If solutions exist, there is always a minimal solution (the

most general unifier): mgu(t, t′).

where: “σ1 is more general than σ2” iff ∃σ s.t. σ2 = σ1σ

Equation and solution example:

f (g(X, b), X, g(h(X), Y))
.
= f (g(U,U), b, g(V, a))

X
.
= b, Y

.
= a, U

.
= b, V

.
= h(b)

15

What is unification?—Algorithms

FOT unification algorithms have been (re-)invented:

◮ J. Herbrand (PhD thesis—page 148, 1930)

◮ J.A. Robinson (JACM 1965)

◮ A. Martelli & U. Montanari (ACM TOPLAS 1982)

But, rather than a monolithic algorithm, FOT unification is

simply expressible as a set of syntax-driven commutative
and terminating constraint normalization rules!

16

What is unification?—Constraint normalization rules

(1) Substitute

φ & X
.
= t

φ[X/t] & X
.
= t

if X occurs in φ

(2) Decompose

φ & f(s1, . . . , sn)
.
= f(t1, . . . , tn)

φ & s1
.
= t1 & . . . & sn

.
= tn

if f ∈ Σn, (n ≥ 0)

(3) Fail

φ & f(s1, . . . , sn)
.
= g(t1, . . . , tm)

⊥

if f ∈ Σn, (n ≥ 0)
and g ∈ Σm, (m ≥ 0)
and m 6= n

17

What is unification?—Constraint normalization rules

(4) Flip

φ & t
.
= X

φ & X
.
= t

if X ∈ V
and t 6∈ V

(5) Erase

φ & t
.
= t

φ
if t ∈ Σ0 ∪ V

(6) Cycle

φ & X
.
= t

⊥

if X ∈ V
and t 6∈ V
and X occurs in t

18

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

19

Semantic Web objects—Objects are labelled graphs!

JohnDoe35 true

c
"John"

j
marriedPerson

a

fullName

d
"Doe"

k
42

e

DoeResidence
123

l
"Main Street"

mstreetAddress

f "Sometown"

n
"USA"

o
40

g
"Jane"

p
marriedPerson

b

fullName

h
"Doe"

q
JaneDoe78 false

i

is
Vot

er

name

age

a
d
d
re

s
s

s
p
o
u
s
e

first

last

number

street

city
country

s
p
o
u
s
e

a
d
d
re

ss

ag
e

name

isVoter

first

last

20

Semantic Web objects—Objects are labelled graphs!

JohnDoe35 : marriedPerson (name => fullName

(first => "John"

, last => "Doe")

, age => 42

, address => DoeResidence

, spouse => JaneDoe78

, isVoter => true

)

21

Semantic Web objects—Objects are labelled graphs!

JaneDoe78 : marriedPerson (name => fullName

(first => "Jane"

, last => "Doe")

, age => 40

, address => DoeResidence

, spouse => JohnDoe35

, isVoter => false

)

DoeResidence : streetAddress (number => 123

, street => "Main Street"

, city => "Sometown"

, country => "USA"

)

22

Semantic Web types—Types are labelled graphs!

M1 boolean

c
string

j
marriedPerson

a

fullName

d
string

k
int

e

R
int

l
string

mstreetAddress

f string

n
string

o
int

g
string

p
marriedPerson

b

fullName

h
string

q
M2 boolean

i

is
Vo

te
r

name

age

a
d
d
re

s
s

s
p
o
u
s
e

first

last

number

street

city
country

s
p
o
u
s
e

a
d
d
re

ss

ag
e

name

isVoter

first

last

23

Semantic Web types—Types are labelled graphs!

M1 : marriedPerson (name => fullName

(first => string

, last => string)

, age => int

, address => R

, spouse => M2

, isVoter => boolean

)

24

Semantic Web formalisms—Types are labelled graphs!

M2 : marriedPerson (name => string

(first => string

, last => string)

, age => int

, address => R

, spouse => M1

, isVoter => boolean

)

R : streetAddress (number => int

, street => string

, city => string

, country => string

)

25

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

26

Original motivation: Formalize this?—ca. 1982

27

Graphs as constraints—Motivation

◮ What: a formalism for representing objects that is:

intuitive (objects as labelled graphs), expressive (“real-life” data

models), formal (logical semantics), operational (executable), &

efficient (constraint-solving)

◮ Why? viz., ubiquitous use of labelled graphs to structure

information naturally as in:

– object-orientation, knowledge representation,

– databases, semi-structured data,

– natural language processing, graphical interfaces,

– concurrency and communication,

– XML, RDF, the “Semantic Web,” etc., ...

28

Graphs as constraints—History

Viewing graphs as constraints stems from the work of:

◮ Hassan Aı̈t-Kaci (since 1983)

◮ Gert Smolka (since 1986)

◮ Andreas Podelski (since 1989)

◮ Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele,

Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred

Schmidt-Schauß, Remi Zajac, . . .

29

Graphs as constraints—Inheritance as graph endomorphism

person id

string

string

married person
id

string

string

married person
id

name

first

last

name

first

last

spouse

spouse

name

last

30

Graphs as constraints—Inheritance as graph endomorphism

person id

string

string

married person
id

string

string

married person
id

name

first

last

name

first

last

spouse

spouse

name

last

31

Graphs as constraints—OSF term syntax

Let V be a countable set of variables, and S a lattice of sorts.

An OSF term is an expression of the form:

X : s(ℓ1 ⇒ t1, . . . , ℓn ⇒ tn)

where:

◮ X ∈ V is the root variable

◮ s ∈ S is the root sort

◮ n ≥ 0 (if n = 0, we write X : s)

◮ {ℓ1, . . . , ℓn} ⊆ F are features

◮ t1, . . . , tn are OSF terms

32

Graphs as constraints—OSF term syntax example

X : person(name⇒ N : ⊤(first⇒ F : string),
name⇒M : id(last⇒ S : string),
spouse⇒ P : person(name⇒ I : id(last⇒ S : ⊤),

spouse⇒ X : ⊤)).

Lighter notation (showing only shared variables):

X : person(name⇒ ⊤(first⇒ string),
name⇒ id(last⇒ S : string),
spouse⇒ person(name⇒ id(last⇒ S),

spouse⇒ X)).

33

Graphs as constraints—OSF clause syntax

An OSF constraint is one of:

◮ X : s

◮ X.ℓ
.
= X ′

◮ X
.
= X ′

where X (X ′) is a variable (i.e., a node), s is a sort (i.e., a

node’s type), and ℓ is a feature (i.e., an arc).

An OSF clause is a conjunction of OSFconstraints—i.e., a

set of OSF constraints

φ1 & . . . & φn

34

Graphs as constraints—From OSF terms to OSF clauses

An OSF term t = X : s(ℓ1 ⇒ t1, . . . , ℓn ⇒ tn) is dissolved

into an OSF clause φ(t) as follows:

ϕ(t)
DEF

== X : s & X.ℓ1
.
= X1 & . . . & X.ℓn

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)

where X1, . . . , Xn are the root variables of t1, . . . , tn.

35

Graphs as constraints—Example of OSF term dissolution

t = X : person(name⇒ N : ⊤(first⇒ F : string),
name⇒M : id(last⇒ S : string),
spouse⇒ P : person(name⇒ I : id(last⇒ S : ⊤),

spouse⇒ X : ⊤))

ϕ(t) = X : person & X. name
.
= N & N : ⊤

& X. name
.
= M & M : id

& X. spouse
.
= P & P : person

& N . first
.
= F & F : string

& M. last
.
= S & S : string

& P . name
.
= I & I : id

& I . last
.
= S & S : ⊤

& P . spouse
.
= X & X : ⊤

36

Graphs as constraints—Basic OSF term normalization

(1) Sort Intersection

φ & X : s & X : s′

φ & X : s ∧ s′

(2) Inconsistent Sort

φ & X : ⊥

X : ⊥

(3) Variable Elimination

φ & X
.
= X ′

φ[X ′/X] & X
.
= X ′

if X 6= X ′

and X ∈ Var(φ)

(4) Feature Functionality

φ & X.ℓ
.
= X ′ & X.ℓ

.
= X ′′

φ & X.ℓ
.
= X ′ & X ′

.
= X ′′

37

Graphs as constraints—OSF unification as OSF constraint normalization

person

student employee

staff faculty

intern

bob piotr pablo simon elena art judy don john sheila

38

Graphs as constraints—OSF unification as OSF constraint normalization

X : student

(roommate => person(rep => E : employee),

advisor => don(secretary => E))

&

Y : employee

(advisor => don(assistant => A),

roommate => S : student(rep => S),

helper => simon(spouse => A))

&

X = Y

39

Graphs as constraints—OSF unification as OSF constraint normalization

X : intern

(roommate => S : intern(rep => S),

advisor => don(assistant => A,

secretary => S),

helper => simon(spouse => A))

&

X = Y

&

E = S

40

Graphs as constraints—Extended OSF terms

Basic OSF terms may be extended to express:

◮ Non-lattice sort signatures

◮ Disjunction

◮ Negation

◮ Partial features

◮ Extensional sorts (i.e., denoting elements)

◮ Relational features (a.k.a., “roles”)

◮ Aggregates (à la monoid comprehensions)

◮ Regular-expression feature paths

◮ Sort definitions (a.k.a., “OSF theories”—“ontologies”)

41

Order-sorted featured graph constraints—(Summary)

We have overviewed a formalism of objects where:

◮ “real-life” objects are viewed as logical constraints

◮ objects may be approximated as set-denoting constructs

◮ object normalization rules provide an efficient operational

semantics

◮ consistency extends unification (and thus matching)

◮ this enables rule-based computation (whether rewrite or

logical rules) over general graph-based objects

◮ this yield a powerful means for effectively using ontologies

42

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

43

Semantic Web formalisms—OWL speaks

What language(s) do OWL’s speak?—a confusing growing

crowd of strange-sounding languages and logics:

• OWL, OWL Lite, OWL DL, OWL Full

• DL, DLR, . . .

• AL, ALC, ALCN , ALCNR, . . .

• SHIF , SHIN , CIQ, SHIQ, SHOQ(D), SHOIQ, SRIQ,

SROIQ, . . .

Depending on whether the system allows:

• concepts, roles (inversion, composition, inclusion, . . .)

• individuals, datatypes, cardinality constraints

• various combination thereof

44

Semantic Web formalisms—DL dialects

For better or worse, the W3C has married its efforts to DL-

based reasoning systems:

◮ All the proposed DL Knowledge Base formalisms in the

OWL family use tableaux-based methods for reasoning

◮ Tableaux methods work by building models explicitly via

formula expansion rules

◮ This limits DL reasoning to finite (i.e., decidable) models

◮ Worse, tableaux methods only work for small ontologies:

they fail to scale up to large ontologies

45

Semantic Web formalisms—DL dialects

Tableaux style DL reasoning (ALCNR)

CONJUNCTIVE CONCEPT:

[

if x : (C1 ⊓ C2) ∈ S

and {x : C1, x : C2} 6⊆ S

]

S

S ∪ {x : C1, x : C2}

DISJUNCTIVE CONCEPT:

[

if x : (C1 ⊔ C2) ∈ S

and x : Ci 6∈ S (i = 1, 2)

]

S

S ∪ {x : Ci}

UNIVERSAL ROLE:

if x : (∀R.C) ∈ S

and y ∈ RS [x]
and y : C 6∈ S

S

S ∪ {y : C}

EXISTENTIAL ROLE:

if x : (∃R.C) ∈ S s.t. R
DEF
==

(dm

i=1
Ri

)

and z : C ∈ S ⇒ z 6∈ RS [x]
and y is new

S

S ∪ {xRiy}
m
i=1 ∪ {y : C}

MIN CARDINALITY:

if x : (≥ n.R) ∈ S s.t. R
DEF
==

(dm

i=1
Ri

)

and |RS [x]| 6= n

and yi is new (0 ≤ i ≤ n)

S

S ∪ {xRiyj}
m,n
i,j=1,1

∪ {yi 6
.
= yj}1≤i<j≤n

MAX CARDINALITY:

if x : (≤ n.R) ∈ S

and |RS [x]| > n and y, z ∈ RS [x]
and y 6

.
= z 6∈ S

S

S ∪ S[y/z]

46

Understanding OWL speak—OSF vs. DL

Understanding OWL amounts to reasoning with knowledge

expressed as OWL sentences. Its DL semantics relies on

explicitly building models using induction.

ergo:

Inductive techniques are eager and (thus) wasteful

Reasoning with knowledge expressed as constrained (OSF)

graphs relies on implicitly pruning inconsistent elements us-

ing coinduction.

ergo:

Coinductive techniques are lazy and (thus) thrifty

47

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

48

LIFE—Rules + constraints for Semantic Web reasoning

LIFE—Logic, Inheritance, Functions, and Equations

CLP(χ)—Constraint, Logic, Programming, parameterized over

is a constraint system χ

LIFE is a CLP system over OSF constraints and functions

over them (rewrite rules); namely:

LIFE = CLP(OSF + FP)

49

LIFE—Rules + constraints for Semantic Web reasoning

adultPerson

employee marriedPerson

richemployee marriedEmployee

A multiple-inheritance hierarchy

50

The same hierarchy in Java

interface adultPerson {
name id;

date dob;

int age;

String ssn;

}
interface employee extends adultPerson {

title position;

String institution;

employee supervisor;

int salary;

}
interface marriedPerson extends adultPerson {

marriedPerson spouse;

}
interface marriedEmployee extends employee, marriedPerson {
}
interface richEmployee extends employee {
}

51

The same hierarchy in LIFE

employee <: adultPerson.
marriedPerson <: adultPerson.
richEmployee <: employee.
marriedEmployee <: employee.
marriedEmployee <: marriedPerson.

:: adultPerson (id ⇒ name

, dob ⇒ date

, age ⇒ int

, ssn ⇒ string).

:: employee (position ⇒ title

, institution ⇒ string

, supervisor ⇒ employee

, salary ⇒ int).

:: marriedPerson (spouse ⇒ marriedPerson).

52

A relationally and functionally constrained LIFE sort hierarchy

:: P : adultPerson (id ⇒ name

, dob ⇒ date

, age ⇒ A : int
, ssn ⇒ string)

| A = ageInYears(P), A ≥ 18.

:: employee (position ⇒ T : title
, institution ⇒ string

, supervisor ⇒ E : employee
, salary ⇒ S : int)

| higherRank(E.position, T) , E.salary ≥ S.

53

A relationally and functionally constrained LIFE sort hierarchy

:: M : marriedPerson (spouse ⇒ P : marriedPerson)

| P.spouse = M.

:: R : richEmployee (institution ⇒ I
, salary ⇒ S)

| stockValue(I) = V , hasShares(R, I,N) , S + N ∗ V ≥ 200000.

54

Proof “memoizing”

OSF constraints as syntactic variants of logical formulae:

Sorts are unary predicates: X : s ⇐⇒ [[s]]([[X]])

Features are unary functions: X.f
.
= Y ⇐⇒ [[f]]([[X]]) = [[Y]]

Coreferences are equations: X
.
= Y ⇐⇒ [[X]] = [[Y]]

So . . .

Why not use (good old) logic proofs instead?

55

Proof “memoizing”

But: model equivalence 6= proof equivalence!

◮OSF-unification proves sort constraints by reducing them

monotonically w.r.t. the sort ordering

◮ ergo, once X : s has been proven, the proof of s(X) is

recorded as the sort “s” itself!

◮ if further down a proof, it is again needed to prove X : s, it

is remembered as X ’s binding

◮ Indeed, OSF constraint proof rules ensure that:

no type constraint is ever proved twice

56

Proof “memoizing”

OSF type constraints are incrementally “memoized” as they

are verified:

sorts act as (instantaneous!) proof caches!

whereas in logic having proven s(X) is not “remembered” in

any way (e.g., Prolog)

Example: consider the OSF constraint conjunction:

•X : adultPerson(age ⇒ 25),

•X : employee,

•X : marriedPerson(spouse ⇒ Y).

Notation: type#(condition) means “constraint condition

attached to sort type”

57

Proof “memoizing”—Example hierarchy reminded

adultPerson

employee marriedPerson

richEmployee marriedEmployee

58

Proof “memoizing”

1. proving: X : adultPerson(age ⇒ 25) . . .

2. proving: adultPerson#(X.age ≥ 18) . . .

3. proving: X : employee . . .

4. proving: employee#(higherRank(E.position, P)) . . .

5. proving: employee#(E.salary ≥ S) . . .

6. proving: X : marriedPerson(spouse ⇒ Y) . . .

7. proving: X : marriedEmployee(spouse ⇒ Y) . . .

8. proving: marriedEmployee#(Y.spouse = X) . . .

Therefore, all other inherited conditions coming from a

sort greater than marriedEmployee (such as employee or

adultPerson) can be safely ignored!

59

Proof “memoizing”

This “memoizing” property ofOSF constraint-solving enables:

using rules over ontologies

as well as, conversely ,

enhancing ontologies with rules

Indeed, with OSF :

◮ concept ontologies may be used as constraints by

rules for inference and computation

◮ rule-based conditions in concept definitions may be

used to magnify expressivity of ontologies thanks to the

proof-memoizing property of ordered sorts

60

Reasoning and the Semantic Web

Outline

◮ Constraint Logic Programming

◮ What is unification?

◮ Semantic Web objects

◮ Graphs as constraints

◮OWL and DL-based reasoning

◮ Constraint-based Semantic Web
reasoning

◮ Recapitulation

61

Recapitulation—what you must remember from this talk. . .

◮ Objects are graphs

◮ Graphs are constraints

◮ Constraints are good : they provide both formal theory

and efficient processing

◮ Formal Logic is not all there is

◮ even so: model theory 6= proof theory

◮ indeed, due to its youth, much of W3C technology is often

naı̈ve in conception and design

Ergo. . . it is condemned to reinventing [square!] wheels

as long as it does not realize that such issues have been

studied in depth for the past 50 years in theoretical CS!

62

Recapitulation—what you must remember from this talk. . . (ctd)

Pending issues re. “ontological programming”
◮ Syntax :

– What’s essential?

– What’s superfluous?

Confusing notation : XML-based cluttered verbosity

ok, not for human consumption—but still!

◮ Semantics:

– What’s a model good for?

– What’s (efficiently) provable?

– decidable 6= efficient

– undecidable 6= inefficient

◮ Applications, maintenance, evolution, etc., ...
◮ Many, many, publications... but no (real) field testing as

yet!

63

Recapitulation—what you must remember from this talk. . . (ctd)

Proposal: take heed of the following facts:

◮ Linked data represents all information as interconnected

sorted labelled RDF graphs—it has become a universal

de facto knowledge model standard

◮ Differences between DL and OSF can come handy:

– DL is expansive—therefore, expensive—and can only

describe finitely computable sets; whereas,

–OSF is contractive—therefore, efficient—and can also

describe recursively-enumerable sets

◮ CLP-based graph unification reasoning = practical KR:

– structural: objects, classes, inheritance

– non-structural: path equations, relational constraints,

type definitions

64

Innovation takes courage. . . (from Martin Wildberger’s “Smarter Planet” Keynote, CASCON 2009)

If I’d asked my customers what they wanted,

they’d have said a faster horse!—Henry Ford

65

Thank You For Your Attention !

For more information:

hak@acm.org

http://cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

http://cedar.liris.cnrs.fr

C E D A R

