
1

Hilog, Defeasibility, and the Foundations of

Practical Meta-Knowledge: A Brief Introduction

Benjamin Grosof*

October 31, 2013

Ontolog Forum‡

Globally accessible webconference session

* Benjamin Grosof & Associates, http://www.mit.edu/~bgrosof/

and

Coherent Knowledge Systems http://www.coherentknowledge.com

‡ http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_31

© Copyright 2013 by Benjamin Grosof & Associates, LLC.10/31/2013

http://www.mit.edu/~bgrosof/
http://www.coherentknowledge.com/
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_31
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_31
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_31
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_10_31

Meta in Rulelog – Extension of LP

Rulelog has several expressive features for meta knowledge

• Overall: mix meta knowledge with “base” knowledge, in fine grain
– Just as the web/markup mixes meta in data with “base” data, in fine grain

• Hilog: any atom can be treated as a term. Used also in Common Logic.

– Provides higher-order syntax (bit restricted)

– Semantics reduces (transforms) to first-order, and uses logical functions.

• Reification: any formula can be treated as a term. A.k.a. quoting.
– Provides modal syntax

• Rule id’s: enables meta-statements about assertions (i.e., about rules)
– Every assertion has a rule id, that is a constant in the logical language

– Useful for provenance, defeasibility, restraint, and other purposes

• Defeasibility: any rule can have exceptions (non-monotonically)
– Strong negation (neg). Prioritized conflict handling. Cancellation of rules.

– Argumentation-theory approach: specify via rules the principles of defeat

• Restraint: bounded rationality, using the “undefined” (u) truth value
– u represents “not bothering”

– Specify via rules the principles of such “not bothering”

– Radial restraint: treat as u every atom/literal whose size exceeds a fixed radius
2

Examples of Reification

• Reification (a.k.a. quoting) makes a term out of a formula:

 believes(john, ${ likes(mary,bob) })

• Variables can be back-quoted:

 jealousOf(john,?X) :- believes(john, ${likes(mary,`?X)}.

• See, e.g., [Yang & Kifer, ODBASE 2002]

• Rules, not just formulas, can be reified as well

Term made out of the

formula likes(mary,bob)

3 3

Back-quoting of ?X

makes its scope be

outside the quoted

formula that ?X appears

within

Examples of Hilog

Hilog permits predicates and functions to be any term:

a variable or a complex term, not just a constant

 p(?X,?Y) :- ?X(a,?Z) and ?Y(f(?Z)(b)).

Hilog also permits variables over atomic formulas. This is

a kind of reification:

 p(q(a)).

 r(?X) :- p(?X) and ?X.

Variable as predicate:

ranges over predicate

names of arity 2

4 4

Complex-term as

function: ranges over

function names of arity 1

Meta-variable: ranges over

unary method names

Introduced in [Chen, Kifer, Warren, “HiLog: A

Foundation for Higher-Order Logic Programming”,

J. of Logic Programming, 1993]

Rule ID’s

• Simple, but important, feature

• Each (assertion) statement gets a unique rule id

• The id can be explicitly specified

– @!{myRule17} H :- B.

• Or if implicit, is a skolem essentially

– H :- B.  gets treated as: @!{gensym0897} H :- B.

• Enables various useful kinds of meta-knowledge, by
asserting properties of the rule id
– Provenance, e.g., createdBy(myRule17, Benjamin)

– Defeasibility

– Rule-based transformations, e.g., for language extensibility, UI,
NLP

5 5

Uses of Hilog and Reification and Rule ID’s

Overall: for knowledge exchange and introspection

• Ontology mappings

• KB translation/import

• KR macros

• Modals (incl. deontic, alethic)

• Multi-agent belief

• Provenance and other aspects of context

• Reasoning control, incl. restraint bounded rationality

• KB modularization

• Navigation in KA (knowledge acquisition)

• …

• Argumentation-theory approach to defeasibility

– Principles of defeat (i.e., of debate) are meta rules that use Hilog and rule id’s

6

6

HiLog Transformation

• HiLog semantics is defined via a transformation

• A simplified version of that, which gives intuition:

– Rewrite each atom p(a,b)  holds_2(p,a,b)

• Generic predicate constants holds_1, holds_2, …

– Treat each term in similar manner

• f(a,b)  apply_2(f,a,b)

• Generic function constants apply_1, apply_2, …

• General case of transformation heavily uses logical
functions

–  creates a challenge in implementation

7 7

8

Knowledge often has Exceptions

• A.k.a. knowledge is defeasible (i.e., can be “defeated”)

• “A (eukaryotic) cell has a nucleus.” … Except when it doesn’t 
• A cell has no nucleus during anaphase. Red blood cells have no nuclei.

• A cell has two nuclei between mitosis and cytokinesis. Some fungi are multinucleate.

• Exceptions / special cases are inevitably realized over time
• E.g., knowledge is incomplete, multiple authors contribute, …

• Requiring entered knowledge to be strictly / universally true
(exception-free) is impractical

• Precludes stating generalities (the typical) and thus the population of authors

• “The perfect is the enemy of the good”

• Exceptions manifest as contradictions, i.e., conflict

• Leveraging multiple sources of knowledge (e.g., KB merging)
requires conflict resolution

• Errors. Confusions. Omitted context.

9

Defeasibility is Indicated When…

• Useful generalities – and potential exceptions – coexist
• Specify knowledge in detail/precision appropriate for various circumstances

• Governing doctrine, definitions, or other knowledge, cannot
be assured to be conflict-free, e.g.:

• Multiple sources of governing doctrine exist
• Typically, no central authority resolves all conflict promptly

• Truth depends on context
• Yet context is rarely made fully explicit

• Many broad realms are full of exceptions
• Policies, regulations, laws –– and the workflows they drive

• Multiple jurisdictions, organizations, contracts, origins

• Learning and science. Updating. Debate.
• May falsify previous hypotheses after observation or communication

• Causal processes: changes to state, from interacting/multiple causes

• Natural language (text interpretation): “there’s a gazillion special cases”

EECOMS Example of Conflicting Rules:

Ordering Lead Time

• Vendor’s rules that prescribe how buyer must place or modify an order:

• A) 14 days ahead if the buyer is a qualified customer.

• B) 30 days ahead if the ordered item is a minor part.

• C) 2 days ahead if the ordered item’s item-type is backlogged at the vendor,

the order is a modification to reduce the quantity of the item, and the buyer is a

qualified customer.

• D) 45 days ahead if the buyer is a walk-in customer.

• Suppose more than one of the above applies to the current order? Conflict!

• Helpful Approach: precedence between the rules.

– E.g., D is a catch-case: A > D , B > D , C > D

• Often only partial order of precedence is justified.

– E.g., C  A , but no precedence wrt B vs. A, nor wrt C vs. B.

10 10

Ordering Lead Time Example in LP with

Courteous Defaults
@prefCust orderModifNotice(?Order,14days) :-

 preferredCustomerOf(?Buyer,SupplierCo), purchaseOrder(?Order,?Buyer,SellerCo) .

@smallStuff orderModifNotice(?Order,30days) :-

 minorPart(?Buyer,?Seller,?Order), purchaseOrder(?Order,?Buyer,SupplierCo) .

@reduceTight orderModifNotice(?Order,2days) :-

 preferredCustomerOf(?Buyer,SupplierCo) and

 orderModifType(?Order,reduce) and

 orderItemIsInBacklog(?Order) and

 purchaseOrder(?Order,?Buyer,SupplierCo) .

\overrides(reduceTight, prefCust) . // reduceTight has higher priority than prefCust

// The below exclusion constraint specifies that orderModifNotice is unique, for a given order.

\opposes(orderModifNotice(?Order,?X), orderModifNotice(?Order,?Y)) :- ?X != ?Y .

• Rule D, and prioritization about it, were omitted above for sake of brevity.

• Above rules are represented in Logic Programs KR, using the Courteous defaults feature

• Notation:
– “:-” means “if”. “@…” declares a rule tag. “?” prefixes a logical variable.
 “\overrides” predicate specifies prioritization ordering.

 An exclusion constraint specifies what constitutes a conflict.
 “!=” means ≠ .

11 11

12

Example: Ontology Translation, leveraging hilog and exceptions

/* Company BB reports operating earnings using R&D operating cost which includes price of a
small company acquired for its intellectual property. Organization GG wants to view
operating cost more conventionally which excludes that acquisition amount. We use rules to
specify the contextual ontological mapping. */

 @{normallyBringOver} ?categ(GG)(?item) :- ?categ(BB)(?item).

 @{acquisitionsAreNotOperating} neg ?categ(GG)(?item) :-

 acquisition(GG)(?item) and (?categ(GG) :: operating(GG)).

 \overrides(acquisitionsAreNotOperating, normallyBringOver). /* exceptional */

 acquisition(GG)(?item) :- price_of_acquired_R_and_D_companies(BB)(?item).
 R_and_D_salaries(BB)(p1001). p1001[amount -> $25,000,000].

 R_and_D_overhead(BB)(p1002). p1002[amount -> $15,000,000].

 price_of_acquired_R_and_D_companies(BB)(p1003). p1003[amount -> $30,000,000].

 R_and_D_operating_cost(BB)(p1003). /* BB counts the acquisition price item in this category */

 R_and_D_operating_cost(GG) :: operating(GG).

 Total(R_and_D_operating_cost)(BB)[amount -> $70,000,000]. /* rolled up by BB cf. BB’s definitions */

 Total(R_and_D_operating_cost)(GG)[amount -> ?x] :- … . /* roll up the items for GG cf. GG’s definitions */

As desired: |= R_and_D_salaries(GG)(p1001)

 |= neg R_and_D_operating_cost(GG)(p1003) /* GG doesn’t count it */

 |= Total(R_and_D_operating_cost)(GG)[amount -> $40,000,000]

Notation: @{…} declares a rule tag. ? prefixes a variable. :- means if. X :: Y means X is a subclass of Y.

\overrides(X,Y) means X is higher priority than Y.

• The change of state effected by process causality requires defeasibility in KR
• A cause’s effect is an exception to the persistence of previous state

• When two causes interfere, one’s effect is an exception to the other’s effect

• Causal process reasoning is a large portion of AP Biology, often requiring multi-step
causal chains and/or multiple grain sizes of description to answer a question

• E.g., Rulelog was piloted on such causal process reasoning in biology using SILK

• Hypothetical question about causal interference in an experiment:
1. "A researcher treats cells with a chemical that prevents DNA synthesis from starting.

2. This treatment traps the cells in which part of the cell cycle?”

Answer: G1 [which is a sub-phase of interphase]

• Counterfactual hypothetical question:
1. " Suppose the typical number of chromosomes in a human liver cell was 12. [It’s actually 46.]

2. How many chromosomes would there be in a human sperm cell?”

Answer: 6. [I.e., half the number in the liver and most organs.]

Ex.’s: Causal Chains & Change in Biology

13

Priorities are available and useful

• Priority information is naturally available and useful. E.g.,

– recency: higher priority for more recent updates

– specificity: higher priority for more specific cases (e.g., exceptional cases,

sub-cases, inheritance)

– causality: higher priority for causal effects (direct or indirect) of actions

than for inertial persistence of state (“frame problem”)

– authority: higher priority for more authoritative sources (e.g., legal

regulations, organizational imperatives)

– reliability: higher priority for more reliable sources (e.g., security

certificates, via-delegation, assumptions, observational data).

– closed world: lowest priority for catch-cases

• Many practical rule systems employ priorities of some kind, often implicit. E.g.,

– rule sequencing in Prolog and production rules

• Courteous LP subsumes this as a special case (totally-ordered priorities)

• Also Courteous LP enables: merging, more flexible & principled treatment

14

Semantic KR Approaches to Prioritized LP

The currently most important for Semantic Web are:

1. Courteous LP

• KR extension to normal LP

• In RuleML, since 2001; in LegalRuleML, since 2012

• Commercially implemented and applied

– IBM CommonRules, since 1999

2. Defeasible Logic

• Closely related to Courteous LP

– Less general wrt typical patterns of prioritized conflict handling

needed in e-business applications

– In progress: theoretical unification with Courteous LP [Wan, Kifer,

Grosof RR-2010]

15

• Combines Courteous + Hilog, and generalizes

• New approach to defaults: “argumentation theories”

– Meta-rules, in the LP itself, that specify when rules ought to be defeated

– [Wan, Grosof, Kifer, et al. ICLP-2009; RR-2010]

• Extends straightforwardly to combine with other key features

– E.g., Frame syntax, external Actions, Omniformity, …

• Significant other improvements on previous Courteous

– Eliminates a complex transformation

– Much simpler to implement

• 20-30 background rules instead of 1000’s of lines of code

– Much faster when updating the premises

– More flexible control of edge-case behaviors

– Much simpler to analyze theoretically

16

Argumentation Theories approach to Defaults in LP

16

• More Advantages

– 1st way to generalize defeasible LP, notably Courteous, to HiLog higher-

order and F-Logic frames

– Well-developed model theory, reducible to normal LP

– Reducibility results

– Well-behavior results, e.g., guarantees of consistency

– Unifies almost all previous defeasible LP approaches

• Each reformulated as an argumentation theory

• E.g., Defeasible Logic (see Wan, Kifer, and Grosof RR-2010 paper)

– Cleaner, more flexible and extensible semantics

• Enables smooth and powerful integration of features

• Applies both to well founded LP (WFS) and to Answer Set Programs (ASP)

– Leverages most previous LP algorithms & optimizations

• Implemented in Flora-2; used in SILK and Coherent Knowledge Systems

17

Argumentation Theories approach*, Continued

17 * Original name: LPDA = LP with Defaults and Argumentation Theories

For More Info
– See the ff. longer AAAI-13 Rules tutorial, available at

http://coherentknowledge.com/publications :

• Benjamin Grosof, Michael Kifer, and Mike Dean.

Semantic Web Rules: Fundamentals, Applications, and Standards

(abstract). Conference Tutorial (Slides for 4-hour tutorial),

27th AAAI Conference on Artificial Intelligence (AAAI-13),

Bellevue, Washington, July 15, 2013.

• This is the latest iteration of a tutorial that since 2004 has been presented at

numerous scientific conferences on web, semantic web, and AI.

• A book is in early stages of preparation based on this tutorial.

– For Survey of KR’s: also see 10/24/2013 session of Ontolog Forum

– For Rulelog overview: also see 6/20/2013 session of Ontolog Forum

– For Restraint: see [Grosof & Swift, AAAI-13] and

[Andersen et al, RuleML-2013 and similar WLPE-2013] (all available at

http://coherentknowledge.com/publications)

18

http://coherentknowledge.com/publications
http://coherentknowledge.com/wp-content/uploads/2013/05/talk-prelim-aaai13-rules-tutorial.pdf
http://www.aaai.org/Conferences/AAAI/2013/aaai13tutorials.php
http://coherentknowledge.com/wp-content/uploads/2013/05/talk-aaai13-rules-tutorial.pdf
http://www.aaai.org/Conferences/AAAI/aaai13.php
http://www.aaai.org/Conferences/AAAI/aaai13.php
http://www.aaai.org/Conferences/AAAI/aaai13.php
http://coherentknowledge.com/publications

Acknowledgements

• Thanks to Michael Kifer and Mike Dean, co-authors of longer
tutorial presentations upon which this presentation was based.

•

Thank You

Disclaimer: The preceding slides represent the views of the author(s) only.

All brands, logos and products are trademarks or registered trademarks of their respective companies and organizations.

© Copyright 2013 by Benjamin Grosof & Associates, LLC. All Rights Reserved. 10/31/2013

OPTIONAL SLIDES FOLLOW

21

22

Declarative Logic Programs (LP) is the Core KR today

• LP is the core KR of structured knowledge management today
• Databases

• Relational, semi-structured, RDF, XML, object-oriented

• SQL, SPARQL, XQuery

• Each fact, query, and view is essentially a rule

• Business Rules – the commercially dominant kinds (production/ECA rules, Prolog)

• Semantic Rules

• RuleML standards design, incl. SWRL. The main basis for RIF.

• W3C Rule Interchange Format (RIF): -BLD, -Core. E.g., Jena tool.

• Extension: Rulelog. E.g., Coherent’s tool.

• Semantic Ontologies

• W3C RDF(S)

• W3C OWL-RL (= the Rules subset). E.g., Oracle’s tool for OWL.

• Overall: LP is “the 99%”, classical logic is “the 1%”

• Relational DB’s were the first successful semantic technology

• LP is the KR/logic that was invented to formalize them

• The Semantic Web today is mainly based on LP KR … and thus essentially equivalent to semantic rules

• You might not have realized that!
22 22

Declarative Logic Programs (LP) – Family of KR’s

• Normal LP

– Rule syntax: H  B1  …  Bk  naf Bk+1  …  naf Bm . (m  0)

• H and Bi’s are atoms.

•  is a kind of implication that lacks contraposition.

 Its lhs and rhs are called the rule’s “head” and “body”, respectively.

• naf (“negation-as-failure”) is a kind of negation that is logically non-
monotonic. Intuitively, naf Bi means “not believe Bi”.

– Semantics (well-founded) is defined constructively via an iterated fixed point.

• It has 3 truth values: true; false in the naf sense; and an intermediate
“undefined”, which can represent paradoxicality.

23

HiLog

• A higher-order extension of predicate logic, which has a
tractable first-order syntax

– Allows certain forms of logically clean, yet tractable,
meta-programming

– Syntactically appears to be higher-order, but
semantically is first-order and tractable

• Used in ISO Common Logic to syntactically extend FOL
– Also appears promising for OWL Full and its use of RDF [Kifer; Hayes]

• Implemented in Flora-2 and SILK

– Also partially exists in XSB, others

• [Chen, Kifer, Warren, “HiLog: A Foundation for Higher-Order
Logic Programming”, J. of Logic Programming, 1993]

24 24

Courteous LP: Advantages

• Facilitate updating and merging, modularity and locality in
specification.

• Expressive: strong negation, partially-ordered prioritization,
reasoning to infer prioritization.

• Guarantee consistent, unique set of conclusions.

– E.g., never conclude both p and p, nor that discount is both 5% and that it is
10%.

• Scalable & Efficient: low computational overhead beyond ordinary LPs.

– Tractable given reasonable restrictions (VB + function-free):

• extra cost is equivalent to increasing v to (v+2) in normal LP, worst-case.

– By contrast, more expressive prioritized rule representations (e.g., Prioritized
Default Logic) add NP-hard overhead.

• Modular software engineering:

– Transform into normal LP, via argumentation theory approach

25

Ubiquity of Priorities
in Commercially Important Rules -- and Ontologies

• Updating in relational databases

– more recent fact overrides less recent fact

• Static rule ordering in Prolog

– rule earlier in file overrides rule later in file

• Dynamic rule ordering in production rule systems (OPS5)

– “meta-”rules can specify agenda of rule-firing sequence

• Event-Condition-Action rule systems rule ordering

– often static or dynamic, in manner above

• Exceptions in default inheritance in object-oriented/frame systems

– subclass’s property value overrides superclass’s property value,

e.g., method redefinitions

• All lack Declarative KR Semantics

26

Thank You

Disclaimer: The preceding slides represent the views of the author(s) only.

All brands, logos and products are trademarks or registered trademarks of their respective companies and organizations.

© Copyright 2013 by Benjamin Grosof & Associates, LLC. 10/31/2013

