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• Logic Programming 
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What is Logic? 

• Here, our focus is on deductive formal logic 

• Formal Logic as a Formal Language 

• A Formal Language, just like NL, has a syntax & 

semantics 

• We are interested in formal logics because we can 

represent our knowledge in these, machines can interpret 

these, and then perform automated inference (proofs 

using inference rules) 

• The same inferences that humans make 
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Propositional Logic: Syntax 

• PL is a Language having a Syntax & a Semantics 

– A set of symbols:  

• Logical Constants: True, False (or T, F) 

• Logical Variables (or propositional symbols): p, q, r, … 

• Logical Operators (or connectives):  , , , , ,  (, ) 

– Formulas (Well-formed Formulas or WFFs) of PL (we will call these 
propositions) 

• Any propositional symbol is a WFF of PL 

• If  and  are WFFs, then so are (  ), (  ), (  ), (  ), and () 
[and note that we will dispense with parentheses where we can] 

• Nothing else is a WFF. 

– So the following are WFFs: p, p, p  q, p  q, (p  q)  r 

– Propositions are things that are true or false 

Propositions in English: 

If John is a management employee, 

then John manages an organization.   

John is a management employee.  

John manages an organization  (MP) 

Propositions in PL: 

p  q  

p   

q     (MP: Modus Ponens) 

Still Need 

Semantics! 
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Proof Theory (Syntax) vs. Model 

Theory (Semantics) 
• Proof Theory: deductive apparatus of a language 

– Axioms: declaring by fiat certain formulas of L  

– Rules of Inference: determines which relations between formulas of L are 
relations of immediate consequence of L 

• i.e., from    in one step 

• More generally, syntactic consequence is: iff there is a derivation in 
PL of the set of formulas  from the set of formulas , written  |-   

– Apply rules to Axioms to derive Theorems 

– Theorem: a formula of a formal language that satisfies purely syntactic 
requirements and has no meaning 

• Formal Model: a model of a formula of L is an interpretation of L for 
which the formula comes out true (a proposition) 

• Model Theory: the theory of interpretations of languages 

– Logical Validity: ‘|= ’ means that   is a logically valid formula of PL iff  
 is true for every interpretation of PL 

– Semantic consequence: ‘ |= ’ means  is a semantic consequence of 
 iff there is no interpretation of PL for which  is true and  is false 
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Semantics: Interpretation  

• Interpretation:  
– An interpretation of a formal language is an assignment of meanings to its 

symbols and/or formulas [Hunter, 1973, p.6-7] 

– “An interpretation of PL is an assignment to each propositional symbol 

(logical variable) of one or other (but not both) of the truth values truth and 

falsity” [Hunter, 1973, p. 57-58] 

• Truth tables: p  (q  r)  (p  q)  (p  r) 
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Some Examples 

English Example Logical Translation 

Implication: 

(1) If pigs can fly, then dogs can talk. 

(1’) P  Q 

Consequence: 

(2.A) If pigs can fly, then dogs can talk. 

(2.B) Pigs can’t fly. 

(2.C) Therefore 

(2.D) Dogs can’t talk. 

INVALID Conclusion! 

(2.A’) P  Q 

(2.B’) P 

(2.C’)  

(2.D) Q 

Consequence: 

(3.A) If pigs can fly, then dogs can talk. 

(3.D) Dogs can’t talk. 

(3.C) Therefore 

(3.B) Pigs can’t fly 

VALID Conclusion! 

(2.A’) P  Q 

(2.B’) Q 

(2.C’)  

(2.D) P 

This inference rule is Modus 

Tollens 
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Predicate Logic: To Propositional Logic,  

Add Predicates, Individuals, Quantifiers 

 

Propositions & Predicates in English: 

Everyone who is a management  

employee manages some 

organization.  

Or:  

For everyone who is a management 

employee, there is some organization 

that that person manages.  

John is a management employee. 

There is some organization that John 

manages. Still Need Semantics! 

Propositions & Predicates in English: 

If John is a management employee, 

then John manages an organization.   

John is a management employee.  

John manages an organization  (MP) 

Propositions & Predicates  in First 

Order Predicate Logic: 

x. [p(x)  y. [q(y)  r(x,y)]] 

“For all x, if x is a p, then there is 

some y such that y is a q, and x is in 

the r relation to y” 

p(john) 

y. [q(y)  r(john,y)]]  

  (MP: Modus Ponens) 

Propositions & Predicates  in First 

Order Predicate Logic: 

p(x)  q(x) 

p(john)   

q(john)     (MP: Modus Ponens) 
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Semantics of Predicate Calculus 

• Generalization of Truth Tables 

• From Tarski, “truth with respect to a model” 

• So Semantic Evaluation is Generalized 

• Define the Semantics of FOL expressions (formulae) 

– Interpretation: Mapping of symbols of the formal language 

(predicates, functions, variables, constants) onto the modeled 

domain (formal: Domain, relational Structure, or Universe) 

– Valuation: Determine the bindings of variables 

– Compositional (Constructive) Semantics: Determine the semantics 

of complex expressions inductively based on the definition of the 

semantics of basic expressions 
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Logic Programming 

• Good Properties: 

– Least Herbrand Model 

– Fixpoint characterization 

– Goal-directed proof procedures 

– These features make logic a real programming language with a clear and complete 

operational semantics with respect to its declarative semantics [Lloyd, 1984] 

• *Horn formulas: 

– Literals: p, p 

– Horn Clause: clause with at most one positive literal, e.g., p1  …  pk  q  

– Horn Formula: conjunction of Horn clauses  

– DavisPutnam procedure (which is a heuristics for SAT) is a polynomial time algorithm for 

HORNSAT 

– Head :- Body, where Head is positive 

– Negation as failure (see CWA) makes logic programs “nonmonotonic” 

– But: Prolog can have classical negation, just can’t have explicit reference to it 

– Uses SLD Calculus: “Selection”, “Linear”, “Definite”, resolution method 

– **Dowling and Gallier's result: satisfiability of Horn clauses can be tested in linear time  

 

 

*Vardi, Moshe. 1998. Logic in Computer Science: An Algorithmic Approach. Course notes. http://www.cs.rice.edu/~vardi/sigcse/mv2.ps.gz 

**Dowling, W., Gallier, J., Linear Time Algorithms for Testing the Satisfiability of Propositional  Horn Formulae, Journal of Logic Programming 3 (1984), 267-284 10 

http://www.cs.rice.edu/~vardi/sigcse/mv2.ps.gz


Prolog Fundamentals 

• Horn Logic: Horn clauses & Horn rules 

• Substitution, Unification: Compute compatible information 

• Resolution Theorem-Proving (resolution as an inference 

rule) 
– Goes back to Robinson (1966), who discovered resolution inference rule & 

shone light on its efficiency 

• Depth-first proving/search 

• Implicit quantifiers: Universal, though can have existentials 

• Aside: For most theorem-provers, you use “skolemization” 

for existential quantification 
– Also applies to universal quantification, i.e., substitute a skolem-constant 

(for unary predicates) or a skolem-function (for n-ary predicates) 

– Quantifier elimination & normalization of expressions helps for efficiency 
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Declarative vs. Procedural Aspects 

of Prolog 
• Prolog is mostly a declarative language, vs. procedural (operational) 

• Mostly declarative semantics, like logic 

• Operational (procedural) semantics:  

– Cut operator: developer puts a search-terminator operator in his/her 

program where it is known that a search down/across, based on additional 

understanding of the domain, will never be appropriate. This is human 

knowledge as a kind of implicit meta-rule! 

– Negation as finite failure: if something is not found in the KB, assert that 

it’s not the case, i.e., is false. Note: this is NOT true logical negation! 

– Prolog is order-dependent, i.e., solutions will be based on the order of 

facts in the knowledge base AND the order of rules 

– Rule order, in particular, is important because rules can have alternatives 

and can be recursive 

• Prolog and most Logic Programming languages assume Closed 

World Assumption, i.e., if it is not in the KB, it doesn’t count 

• Logic and Semantic Web languages assume Open World Assumption 

and true logical negation 
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Facts, Rules in Prolog vs. Logic 

• Facts: instantiated relations (properties) 

– Could have great flexibility in how you implement logical relations; maybe too much! 

– subclass(human, mammal) [human is a subclass of mammal], or 

– class(human) [human is a class]  

– parent(mary,john). 

– female(mary). 

– parent(ann,mary). 

• Rules: inference steps; consider the proof syntax generalized MP 

– mother(X,Y) :- parent(X,Y), female(X). 

– grandparent(X,Z) :- parent(X,Y), parent(Y,Z). 

• Compare to Logic: 

X: Y: parent(X,Y)   female(X) → mother(X,Y). 

X: Y: Z: parent(X,Y)  parent(Y,Z) → grandparent(X,Z). 

• Compared to Logic, the conclusion is given first, i.e., it’s on the left side, 

it’s the Head of the Rule; the Clauses you need to prove (the individual 

conjuncts or disjuncts) are on the right side. 

• These structures are called Horn Clauses & Horn Rules 

Remember: This 

is Generalized 

Modus Ponens, 

i.e., consequence 

NOT implication! 
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Ontology Spectrum: One View 

weak semantics 

strong semantics 

Is Disjoint Subclass of 

with transitivity 

property 

Modal Logic 

Logical Theory 

Thesaurus 
 Has Narrower Meaning Than 

Taxonomy 
Is Sub-Classification of 

Conceptual Model 
 Is Subclass of 

DB Schemas, XML Schema 

UML 

First Order Logic 

Relational 

Model, XML 

ER 

Extended ER 

Description Logic 

DAML+OIL, OWL 

RDF/S 
XTM 

Syntactic Interoperability 

Structural Interoperability 

Semantic Interoperability 
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Ontology as Logical Theory 

• A set of axioms designed to account for the intended 
meaning of a vocabulary 

• Axioms are designed such that the set of its models 
approximates the set of intended models of L according to 
ontological commitment K 

• So, an ontology is a logical theory accounting for the 
intended meaning of a formal vocabulary (ontological 
commitment to a particular conceptualization of the world) 

• Axioms, inference rules, theorems, theory 
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Logical Theories: More Formally 

* N. Guarino. 1998. Formal ontology in information systems, pp. 3-15.  In Formal Ontology in Information Systems, N. 

Guarino, ed., Amsterdam: IOS Press. Proceedings of the First International Conference (FOIS’98), June 6-8, Trent, Italy.  p. 7 

Conceptualization C 

Models M(L) 

Ontology 

Language L 

Intended models IM(L) 
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Axioms, Inference Rules, Theorems, 

Theory  
Theory 

Theorems 

(1) Theorems are 

licensed by a 

valid proof using 

inference rules 

such as Modus 

Ponens 

 

(3) Possible 

other theorems 

(as yet 

unproven) 

Axioms 

(2) Theorems 

proven to be true 

can be added back 

in, to be acted on 

subsequently like 

axioms by 

inference rules 

(4) Ever 

expanding 

theory 
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Axioms Inference Rules Theorems 

Class(Thing) 

Class(Person) 

Class(Parent) 

Class(Child) 

If SubClass(X, Y) then X 

is a subset of Y. This also 

means that if A is a 

member of Class(X),  

then A is a member of 

Class(Y) 

SubClass(Person, Thing)  

SubClass(Parent, Person) 

SubClass(Child, Person) 

ParentOf(Parent, Child) 

NameOf(Person, String) 

AgeOf(Person, Integer) 

If X is a member of Class 

(Parent) and Y is a 

member of Class(Child), 

then  (X Y) 

And-introduction: given P, Q, 

it is valid to infer P  Q. 

Or-introduction: given P, it is 

valid to infer P  Q. 

And-elimination: given P  Q, 

it is valid to infer P. 

Excluded middle: P  P (i.e., 

either something is true or its 

negation is true) 

Modus Ponens: given P  Q, 

P, it is valid to infer Q 

 

If P  Q are true, then so is P  Q. 

If X is a member of Class(Parent),  

then X is a member of Class(Person). 

If X is a member of Class(Child), 

then X is a member of Class(Person).  

If X is a member of Class(Child), 

then NameOf(X, Y) and Y is a String. 

If Person(JohnSmith), then                

 ParentOf(JohnSmith, JohnSmith). 
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Ontology Representation Levels 

Level Example Constructs 
Knowledge 

Representation (KR) 

Language (Ontology 

Language) Level: 
Meta Level to the 

Ontology Concept             

Level 

Class, Relation, Instance, 

Function, Attribute, 

Property, Constraint, Axiom, 

Rule 

Ontology Concept 

(OC) Level:  
Object Level to the KR 

Language Level, 

Meta Level to the 

Instance Level 

Person, Location, Event, 

Parent, Hammer, River, 

FinancialTransaction, 

BuyingAHouse, Automobile, 

TravelPlanning, etc. 

Ontology Instance 

(OI) Level: 
Object Level to the 

Ontology Concept 

Level 

Harry X. Landsford III, Ralph 

Waldo Emerson, Person560234, 

PurchaseOrderTransactionEve

nt6117090, 1995-96 V-6 Ford 

Taurus 244/4.0 Aerostar 

Automatic with Block Casting # 

95TM-AB and Head Casting 

95TM 

 

Meta-Level to 

Object-Level 

Meta-Level to 

Object-Level 

Language 

Ontology 

(General) 

Knowledge 

Base  

(Particular) 
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Ontology Example from Electronic Commerce: the general domain of 

machine tooling & manufacturing; note that these are expressed in 

English, but usually would be in expressed in a logic-based language 

Concept Example 

Classes (general 

things) 

 

Metal working machinery, equipment and supplies, metal-

cutting machinery, metal-turning equipment, metal-milling 

equipment, milling insert, turning insert, etc. 

Instances (particular 

things) 

 

An instance of metal-cutting machinery is the “OKK KCV 

600 15L Vertical Spindle Direction, 1530x640x640mm 

60.24"x25.20"x25.20 X-Y-Z Travels Coordinates, 30 

Magazine Capacity, 50 Spindle Taper, 20kg 44 lbs Max Tool 

Weight, 1500 kg 3307 lbs Max Loadable Weight on Table, 

27,600 lbs Machine Weight, CNC Vertical Machining 

Center” 

Relations: subclass-of, 

(kind_of), instance-of, 

part-of, has-geometry, 

performs, used-on, etc. 

A kind of metal working machinery is metal cutting 

machinery,  

A kind of metal cutting machinery is milling insert. 

Properties Geometry, material, length, operation, ISO-code, etc. 

Values: 1; 2; 3; “2.5”, inches”; “85-degree-diamond”; “231716”; 

“boring”; “drilling”; etc.  

Rules (constraints, 

axioms) 

 

If milling-insert(X) & operation(Y) & material(Z)=HG_Steel 

& performs(X, Y, Z), then has-geometry(X, 85-degree-

diamond).  

[Meaning: if you need to do milling on High Grade Steel, 

then you need to use a milling insert (blade) which has a 85-

degree diamond shape.] 
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Areas of 

Interest 

Middle Ontology 
(Domain-spanning 

Knowledge) 

Most General Thing 

Upper Ontology 
(Generic Common  

Knowledge) 

Person Roles 

Processes 

Organizations 

Locations 

Lower Ontology 
(individual domains) 

Businessman 
Financier 

Lowest Ontology 
(sub-domains) 

IBM 

But Also These! 

Upper, Middle, Domain Ontologies 

Commercial 
Org 

ILOG 
Developer 

Time 

Part 

Identity 

Space 

Material 

Facilities 
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Ontology Content Architecture:  

More Complex View 

Epistemological Data Layer: Schema + Tuples 

Ontology Individual (Instance) Layer 

Ontology Universal (Class) Layer 

Knowledge Representation Language Layer (Abstract Core Ontology)* 

Abstract Top Ontology Layer (Set Theory, Category Theory)* 

* Adapted from: Herre, Heinrich, and Frank Loebe. 2005. A Meta-ontological Architecture for Foundational Ontologies.  In: R. 

Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1398–1415, 2005. Springer-Verlag Berlin Heidelberg.  

Instantiation 

Relation 

Instantiation 

Relation 

Grounding 

Relation 

Evidenced By 

Relation 
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Ontology Spectrum 

weak semantics 

strong semantics 

Is Disjoint Subclass of 

with transitivity 

property 

Modal Logic 

Logical Theory 

Thesaurus 
 Has Narrower Meaning Than 

Taxonomy 
Is Sub-Classification of 

Conceptual Model 
 Is Subclass of 

DB Schemas, XML Schema 

UML 

First Order Logic 

Relational 

Model, XML 

ER 

Extended ER 

Description Logic 

DAML+OIL, OWL 

RDF/S 
XTM 

Syntactic Interoperability 

Structural Interoperability 

Semantic Interoperability 

Logic Spectrum 

will cover this area 
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Logic Spectrum 

less expressive 

most expressive 

Second Order Logic (SOL)  

Propositional  
Logic (PL) 

First-Order Logic (FOL): 
Predicate Logic, Predicate 
Calculus 

Higher Order Logic (HOL) 

Modal Propositional  
Logic 

Modal Predicate Logic 
(Quantified Modal 
Logic) 

Logic Programming 
(Horn Clauses) 

Description Logics 
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Logic Spectrum: Classical Logics: 

PL to HOL 

less expressive 

most expressive 

Second Order Logic (SOL)  

Propositional  
Logic (PL) 

Propositions (True/False) + Logical Connectives (, , , , ) 

First-Order Logic (FOL): 
Predicate Logic, Predicate 
Calculus 

Higher Order Logic (HOL) 

PL + Predicates + Functions + Individuals + 

Quantifiers (, ) over Individuals 

FOL + Quantifiers (, ) over 

Predicates 

Modal Propositional  
Logic 

Modal Predicate Logic 
(Quantified Modal 
Logic) 

PL + Modal operators (, ): necessity/possibility, obligatory/permitted, 

future/past, etc. Axiomatic systems: K, D, T, B, S4, S5 

FOL + Modal operators 

SOL + Complex Types + 

Higher-order Predicates 

(i.e., those that take one 

or more other predicates 

as arguments) 

Logic Programming 
(Horn Clauses) 

Substructural  Logics: focus on structural rules 

Syntactic Restriction of FOL 

Decidable fragments of FOL: unary predicates 

(concepts) & binary relations (roles) [max 3 vars] 
Description Logics 
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Logic Spectrum: Extending Logic 

less expressive 

most expressive 

Second Order Logic (SOL)  

Propositional  
Logic (PL) 

First-Order Logic (FOL): 
Predicate Logic, Predicate 
Calculus 

Higher Order Logic (HOL) 

Modal Propositional  
Logic 

Modal Predicate Logic 
(Quantified Modal 
Logic) 

Logic Programming 
(Horn Clauses) 

Intuitionistic, Other Non-Classical Logics  

Probabilistic Logics  

Description Logics 

Substructural  Logics: focus on structural rules 
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Logic Spectrum: Languages: 

Ontologies & Rules 

less expressive 

most expressive 

Second Order Logic (SOL)  

Description Logics 

Propositional  
Logic (PL) 

First-Order Logic (FOL): 
Predicate Logic, Predicate 
Calculus 

Higher Order Logic (HOL) 

Modal Propositional  
Logic 

Modal Predicate Logic 
(Quantified Modal 
Logic) 

Logic Programming 
(Horn Clauses) 

OWL Lite 

OWL DL 

OWL Full 

Almost SHIF(D) (technically, it’s a variant of SHIN(D) 

Mostly SHOIN(D): Close to the SHIQ and SHOQ 

Almost FOL, but Classes as Instances goes to SOL 

RDF/S Positive existential subset of FOL: no negation, universal 

quantification 

SWRL  RIF 
* RuleML 

* Expressed syntactically in XML, requires binding to a logic, ranges over all logics 

Substructural  Logics: focus on structural rules 

Linear Logic: consume antecedents 

SOL extensions Common Logic (CL) 
Knowledge Interchange Format (KIF) 
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Semantic Web Rules: RuleML, SWRL (RuleML + 

OWL), RIF 

Rules 

Reaction Rules Transformation Rules 

Derivation Rules 

Facts Queries 

Integrity Constraints 

RuleML  

Rule  

Taxonomy*  

*Adapted from Harold Boley, Benjamin 
Grosof, Michael Sintek, Said Tabet, Gerd 
Wagner. 2003. 
RuleML Design, 2002-09-03: Version 0.8. 
http://www.ruleml.org/indesign.html 

• Reaction rules can be reduced to general rules that return no value. Sometimes these are called 

“condition-action” rules. Production rules in expert systems are of this type 

• Transformation rules can be reduced to general rules whose 'event' trigger is always activated. A 

Web example of transformation rules are the rules expressed in XSLT to convert one XML 

representation to another. “Term rewrite rules” are transformation rules, as are ontology-to-ontology 

mapping rules 

• Derivation rules can be reduced to transformation rules that like characteristic functions on success 

just return true. Syntactic A |P B  and Semantic Consequence A |=P B are derivation rules 

• Facts can be reduced to  derivation rules that have an empty (hence, 'true') conjunction of premises. 

In logic programming, for example, facts are the ground or instantiated relations between “object 

instances” 

• Queries can be reduced to derivation rules that have – similar to refutation proofs – an empty (hence, 

'false') disjunction of conclusions or – as in 'answer extraction' – a conclusion that captures the 

derived variable bindings 

• Integrity constraints can be reduced to queries that are 'closed' (i.e., produce no variable bindings) 28 



So Which Rules Are Useful,  

Good, Bad, Ugly? 

 Good 
– Logical rules are declarative, confirmable by human beings, machine 

semantically-interpretable, non-side-effecting 

– Logical rules can express everything that production (expert system)  

rules, procedural rules can 

– Logical rules can express business, policy rules, static/dynamic rules 

 Bad 
– Rules expressed in procedural code if-then-else case statements are 

non-declarative, inspectable by human beings, confirmable with 

documentation and observance of conformance to documentation, 

side-effecting (ultimate side-effect: negating a value and returning 

true for that value) 

 Ugly 
– Expert systems rules “simulate” inference, are pre-logical, have side-

effects, tend toward non-determinism, force all knowledge levels to 

the same level (this is why ontologies and ontological engineering 

came about), are horrible to debug 29 



Issues: Expressivity 

• What do you want to do with your KR language? 
– Build an ontology, build a knowledge base 

– Check consistency of your knowledge 

– Check completeness of your knowledge 

– I.e., Model checking, model finding 

– Automatically classify new concepts, assertions 

– Query the KB (search & navigation) 

– Perform other inference  
• Deduction 

• Induction 

• Abduction 

– Add probabilistic reasoning 
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Issues: Negation 

• Example: First-order positive existential conjunctive logic restricted to 
binary relations: e.g., RDF/S 

• Negation 

– Open World Assumption: can always add more facts 

– Closed World Assumption (negation by finite failure): whatever is in 
the database, possibly extended by dynamic (but finite) assertions 
up to some point determines what is the case 

• If X is not provable from theory/found in the database, then NOT X is 
true 

• One problem: Theory could be inconsistent (from Cadoli & Eiter, 1998, 
p. 63): T={a b}, CWA(T)={a b, a, b} 

– Generalized CWA: inference from minimal models 

• T={a b}, CWA(T)={a b} 

– Negation (by finite failure) makes logic programs “nonmonotonic” 

• Classical logic: add an axiom to a 1st order theory, can derive new 
theorems, no previously proved theorems need to be reproved 

• But adding a rule to a logic program may force some retractions 
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Issues: Tractability (Complexity) 

• Descriptive Complexity: part of Finite Model Theory (MT of finite 
structures) a branch of Logic and Computer Science 

• Decidable, Semi-decidable:  
– Decidable: there is an effective method for telling whether or not each formula of a 

system is a theorem of that system or not 

– Semi-decidable: If a formula really is a theorem of a system, eventually will be able to 
prove it is, but not if it is not: may never terminate 

• Complexity Classes 

RE (semi-decidable): Recursively enumerable    

EXPSPACE: Exponential space  Intractable 

NEXP: Nondeterministic exponential time 

EXP: Exponential time 

——————————————————————— 

PSPACE: Polynomial space   Probably Intractable 

NP: Nondeterministic polynomial time 

——————————————————————— 

P: Polynomial time    Tractable 
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Issues: Tractability (Complexity) 

 

*http://www.cs.umass.edu/~immer

man/descriptive_complexity.html 
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Issues: Formal Properties  

• Satisfiability: whether a representation is consistent (Note: inference in 
the formalism has this cost) 

• Entailment: whether a formula follows from another formula 

• Soundness: any expression that can be derived from the KB is 
logically implied by that KB 

• Completeness: any expression that is logically implied by the KB can 
be derived 

• Decidability: can a sound and complete algorithm be constructed? 

• Complexity: is it tractable (worst-case polynomial time) or intractable? 

• Expressivity: roughly: expressivity and tractability are inversely 
proportional 

– some expressive formalisms may be intractable or even undecidable 

• Model Checking: whether a state is consistent with the knowledge 

• Model Finding: can find a coherent state of the knowledge? 

  
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• Next: Benjamin Grosof will provide 

more detail 
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Backup 
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Equivalences 

 

Law of Negation: 

 p   p 

 

Combining a Variable with itself: 

p  p  TRUE     Excluded Middle 

p  p  FALSE   Contradiction 

p   p  p               Idempotence of  

p   p  p               Idempotence of  

 

Properties of Constants: 

p  TRUE  TRUE 

p  FALSE  p 

p  TRUE  p 

p  FALSE  FALSE 

DeMorgan’s Laws:  

(Distributing negation over a 

complex expression, with 

change of the operator of that 

expression) 

(p   q)    p    q 

 (p  q)    p    q 

 

Subsumption: 

p  (p  q)  p 

 

Conditional Law: 

p  q   p  q 

 

Biconditional Law:  

p  q   (p  q)  (q  p)    

 

Contrapositive Law:  

p  q  q  p 

Commutativity: 

p  q  q  p 

p  q  q  p 

 

Associativity:  

p  (q  r)  (p  q)  r 

p  (q  r)  (p  q)  r 

  

Distributivity: 

p  (q  r)  (p  q)  (p   r) 

p  (q  r)  (p  q)  (p   r) 
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Example Prolog: Transitive Closure (is 

Subsumed By) 

• Facts: 
superClass(a, b). 

superClass(a1, b). 

superClass(b, c). 

superClass(c, d). 

superClass(d, e). 

superClass(e, f). 

superClass(b, c2). 

superClass(e, c2). 

superClass(c2, d2). 

superClass(d2, e2). 

superClass(e2, f2). 

superClass(a, b2). 

superClass(b2, c3). 

superClass(c3, d3). 

• Rules: 
ancestor(X,Y) :- superClass(X,Y). 

ancestor(X,Y) :- superClass(X,Z), ancestor(Z,Y). 

• We assert the above by either consulting a file (batch mode) or 
entering these in interactively (former is preferred!) 
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Example: Transitive Closure (is Subsumed 

By) Results 

• Results can be written to a file/database or displayed on screen 

• Assume the previous file was called transClosure.pro was loaded 

(consulted). 

• Then the query was executed:  

test1(L); 

Consulting Source Files: 'transClosure.pro' 

Type 'quit.' to End 

?- test1(L). 

L = [[a, b], [a1, b], [b, c], [c, d], [d, e], [e, f], [b, c2], [e, c2], [c2, d2], [d2, e2], 

[e2, f2], [a, b2], [b2, c3], [c3, d3], [a, c], [a, c2], [a, d], [a, e], [a, f], [a, c2], 

[a, d2], [a, e2], [a, f2], [a, d2], [a, e2], [a, f2], [a1, c], [a1, c2], [a1, d], [a1, e], 

[a1, f], [a1, c2], [a1, d2], [a1, e2], [a1, f2], [a1, d2], [a1, e2], [a1, f2], [b, d], 

[b, e], [b, f], [b, c2], [b, d2], [b, e2], [b, f2], [c, e], [c, f], [c, c2], [c, d2], [c, e2], 

[c, f2], [d, f], [d, c2], [d, d2], [d, e2], [d, f2], [b, d2], [b, e2], [b, f2], [e, d2], [e, 

e2], [e, f2], [c2, e2], [c2, f2], [d2, f2], [a, c3], [a, d3], [b2, d3]] ; 

no 
?- 
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Rules of Inference:  
Note that P & Q in the following can each be a 

simple or complex expression 
Modus Ponens 

p q 

p 

——— 

q 

Introduction 

p  q 

q  p 

——— 

p  q 

Case Analysis 

(sometimes called  

Elimination) 

p  q 

p  r 

q  r 

——— 

r 

 Introduction 

p 

q 

——— 

p  q 

 

 Introduction 

p 

q 

——— 

p  q 

 

Substitution 

(when ) 

 

 

——— 

 

 

Modus Tollens 

p  q 

q 

——— 

p 

 

Contrapositive 

p  q 

——— 

q  p 

 

Vacuous Proof 

p 

——— 

p  q 

 

 Elimination  

p   q 

——— 

p 

 

Contradiction 

p 

p 

——— 

FALSE 

 

Tautology 

(when  

TRUE) 

 

——— 

 

NOTE:  the 

following two rules 

have assumptions 

and so indentation 

is necessary 

above the line. 

 

Reduction to 

Absurdity 

        [p] 

        FALSE 

—————— 

p 

 

Introduction        

        [p] 

        q 

—————— 

p  q 40 



Prolog vs. Logic 

• Prolog does backward-chaining 

– Go from the theorem you want to prove & prove its dependent 

components 

– As opposed to forward-chaining, in which you prove the components & 

those solutions are posted on some global space (data structure), which 

other forward rules then can have at 

• Prolog assumes Universal Quantification: builds it in, so every 

query/rule is universally quantified, by default 

• Prolog will return the first satisfying values, then if you request more, 

all the remainders 

– There are also Prolog constructs to just do all the solutions & find all the 

values (FINDALL) 

• Remember: queries are like theorems 

– The difference? Proven theorems return T or F; queries return the 

bindings which make those true theorems true 
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Example: Axioms on Social Roles 1 

• Descriptions and Concepts 

(A1) DS(x)  NASO(x) 

(A2) CN(x)  NASO(x) 

(A3) DS(x)  CN(x) 

• Concept Use and Definition 

(A4) US(x, y)  (CN(x)  DS(y)) 

(A5) DF(x, y)  US(x, y) 

(A6) CN(x)  y(DF(x, y)) 

(A7) DS(x)  y(US(y, x)) 

(A8) (DF(x, y)  DF(x, z))  y = z 

(A9) US(x, y)  (PRE(y, t)  PRE(x, t)) 

(A10) DF(x, y)  (PRE(x, t)  PRE(y, t)) 

(T1) DF(x, y)  (CN(x)  DS(y))  (A4),(A5) 

(T2) CN(x)  !y(DF(x, y))   (A6),(A8) 

(T3) DF(x, y)  (PRE(x, t)  PRE(y, t)) (A5),(A9),(A10) 
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Example: Axioms on Social Roles 2 

• Classification 

(A11) CF(x, y, t)  (ED(x)  CN(y)  TL(t)) 

(A12) CF(x, y, t)  PRE(x, t) 

(A13) (CF(x, y, t)  DS(x))  US(y, x) 

(A14) CF(x, y, t)   CF(y, x, t) 

(A15) (CF(x, y, t)  CF(y, z, t))  CF(x, z, t) 

• Anti-Rigidity 

(D1) AR(x) df y,t(CF(y, x, t)  t'(PRE(y, t')  CF(y, x, t'))) 

• Founded 

(D2) FD(x) ) df y,d(DF(x, d)  US(y, d) Ÿ  

   z,t(CF(z, x, t)  

   z'(CF(z', y, t)  P(z, z', t)  P(z', z, t))) 

• Role 

(D3) RL(x) ) df AR(x)  FD(x) 
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Reaction Rules (Event-Condition-Action) 

Reaction rules can be reduced to general rules that return no value. Sometimes 

these are called “condition-action” rules. Production rules in expert systems are 

of this type. Note that these are similar to logical derivation rules but are side-

effecting (state-changing), i.e., non-monotonic 

 

General  rule form: Condition  Conclusion, i.e., If Condition Then Conclusion 

 

Reaction  rule form: Event-Condition-Action  

Event: some occurrence triggers or invokes the rule 

Condition: the rule fires and the condition gets evaluated. The condition can be 

anything but in general represents a particular state, i.e., if a property or set of 

properties hold. 

Action: if the condition is met, then the action is performed 

 

In general, the action can arbitrarily change the state of the rule environment, 

thus is non-monotonic 

 

Example: If (boiler.pressure > 1000 lbs/sq in) then (boiler.state = shutdown) 

If the boiler pressure is greater than 1000 lbs/sq in, shut the boiler down 
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Transformation Rules 

Transformation rules can be reduced to general rules whose 'event' trigger is 

always activated. A Web example of transformation rules are the rules expressed 

in XSLT to convert one XML representation to another. “Term rewrite rules” are 

transformation rules, as are ontology-to-ontology mapping rules 

 

General  rule form: LeftHandSide   RightHandSide 

LeftHandSide: a formal language expression 

RightHandSide: a formal language expression 

 

Context Free grammar rules (also [Extended] Backus-Naur, etc.) are like this:  

S  a b 

S  a S 

Equivalence rules in Logic, Mathematics: e.g., DeMorgan’s Laws: 

¬ (P  Q) = (¬ P)  (¬ Q)   2 * (3 + 4) = (2 * 3) + (2 * 4) 

¬ (P  Q) = (¬ P)  (¬ Q) 

 

General Rewrite Rules: 

A, B  B A 
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Derivation Rules 

Derivation rules can be reduced to transformation rules that like 

characteristic functions on success just return true. Syntactic A |P B  

and Semantic Consequence A |=P B are derivation rules 

 

 

General  rule form:  Antecedent  | Consequent (syntactic 

consequence) 

 

Example: Modus Ponens 

X, X   Y  | Y 
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Facts, Queries, Integrity Constraints 

• Facts can be reduced to derivation rules that have an empty (hence, 'true') 

conjunction of premises. In logic programming, for example, facts are the 

ground or instantiated relations between “object instances” 

 

• General  rule form:  | Consequent (syntactic consequence) 

• Example: father (johnSmith, marySmith) 

• | Y 

 

• Queries can be reduced to derivation rules that have – similar to refutation 

proofs – an empty (hence, 'false') disjunction of conclusions or – as in 

'answer extraction' – a conclusion that captures the derived variable bindings 

 

• General  rule form:  Antecedent |  (syntactic consequence) 

• Example: person (X), person (Y), father (X, Y)? 

•  X |  

 

• Integrity constraints can be reduced to queries that are 'closed' (i.e., produce 

no variable bindings) 
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Example: Inference and Proof 

subProperty 

Given... And... 

motherOf 

Can conclude... 

parentOf 

motherOf 

Mary 

Bill 

parentOf 

Mary 

Bill 

A simple inferencing example from “Why use OWL?” by Adam Pease, http://www.xfront.com/why-use-owl.html 

Deduction  A method of 

reasoning by which one infers 

a  conclusion from a set of 

sentences by employing the 

axioms  and rules of inference 

for a given logical system.  

Infer: 

Given: 

Proof Using Inference Rule of Modus Ponens 

If motherOf is a subProperty of parentOf,  

and Mary is the mother of Bill, then Mary 

is the parentOf Bill 

 

motherOf is a subProperty of parentOf  

 

Mary is the motherOf Bill 

 

Mary is the parentOf Bill 
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Rule Interchange Format (RIF)* 

• RIF is a rule language based on XML syntax 

• RIF provides multiple versions, called dialects: 

– Core: the fundamental RIF language, and a common subset of 

most rule engines (It provides "safe" positive datalog with builtins)  

– BLD (Basic Logic Dialect): adds to Core: logic functions, equality 

in the then-part, and named arguments (This is positive Horn logic, 

with equality and builtins)  

– PRD (Production Rules Dialect): adds a notion of forward-

chaining rules, where a rule fires and then performs some action, 

such as adding more information to the store or retracting some 

information (This is comparable to production rules in expert 

systems, sometimes called condition-action,  event-condition-

action, or reaction rules) 

•http://www.w3.org/TR/rif-overview/ 

•http://www.w3.org/2005/rules/wiki/RIF_Working_Group 

•http://www.w3.org/2005/rules/wiki/RIF_FAQ 49 



RIF Dialects 

RIF Core 

RIF Basic Logic Dialect RIF Production Rules Dialect 

RIF Framework for 

Logic Dialects * 

* http://www.w3.org/TR/rif-fld/ 
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Description Logics 

• What is a Description Logic?  

– Synonyms: Terminological Logic, Concept Logic, based on Concept Language, Term 

Subsumption Language 

– A declarative formalism for the representation and expression of knowledge and sound, 

tractable reasoning methods founded on a firm theoretical (logical) basis 

– Expressive, sound & complete, decidable, classical semantics, tractable reasoning 

– Function-free FOL using at most 3 variables (basic) 

• A description: an expression in a formal language that defines a set of instances or 

tuples 

• DL: a syntax for constructing descriptions and a semantics that defines the meaning of 

each description 

• Components 

– T-box: Terminological box – concepts, classes, predicates 

• One or more subsumption hierarchies/taxonomies of descriptions 

• Terminological axioms: introduce names of concepts, roles 

• Concepts: denote entities 

• Roles: denote properties (binary predicates, relations) 

• Subsumption: comparable to matching or unification in other systems 

– A-box: Assertional box – individuals, constants 

• Instances in the OO world, tuples in the DB world 
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First Order & Higher Order Logics 

• FOL semi-decidable 

– Decidable: there is an effective method for telling whether or not each 
formula of a system is a theorem of that system or not 

– Semi-decidable: If a formula really is a theorem of a system, eventually will be 
able to prove it is, but not if it is not: may never terminate 

• Second Order: sometimes used in linguistics 

– “Tall”, “Most”, etc.  

– Quantification over Individual & Predicate variables 

–  ( (a)  F()): “John has an unusual property” 

• CYCL has some constrained 2nd order reasoning 

• Theorem-provers 

– HOL, Prover9, etc. 

• Prolog & Cousins  

– Restricted FOL: Horn Clauses (only 1 un-negated term in a formula, 
resolution method proves the contradiction of the negation of a term) 

– Non-standard negation: negation by finite failure 

– Closed World Assumption 

– Declarative + Operational Semantics: use of Cut 

• Other: Conceptual Graphs, UML, Expert System Shells, Modal Logics 
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Limitations of FOL, Other Logics 

• Expressive limitations of FOL: 
– Possible non-monotonicity:  

All birds can fly 

All ostriches are birds 

Tweety is an ostrich 

————————— 

*Tweety can fly  NO! 

• Quantifiers: Existential, Universal 

• Negation: what kind? 

• Other:  
– Generalized Quantifiers 

– Types & Sorts 

– Probabilistic Reasoning 

– Possibilistic Reasoning 

– Etc. 
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Issues: Tractability (Complexity) 

• Intractable: exponential in the worse case (meaning some are hard to 
solve) 

– What is more typical (average?) case? 

• Satisfiability decision process (SAT): NP-complete 

– NP-complete: can be solved by a nondeterministic Turing Machine in 
polynomial time, with the additional property that it is also NP-hard (solving 
it in polynomial time would make it possible to solve all problems in class 
NP in polynomial time) 

– FO SAT is co-RE-complete (co: complementary) 

• Syntactic restrictions: 

– Horn Clause formulae: SAT is polynomial 

– x,…, y,….  with no functions symbols: NEXP-complete 

– Some relations on finite models expressible in FOL 

• Graphs: symmetric, transitive, ok 

• But not: Is graph A the transitive closure of graph B? 
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