
Copyright © Leo Obrst, MITRE, 2013

Dr. Leo Obrst

Information Semantics

Center for Connected Government

MITRE

October 24, 2013

Survey:

Logic, Logic Programming,

Ontology, Rules

Ontolog Mini-Series: Ontology, Rules, and Logic

Programming for Reasoning and Applications

(RulesReasoningLP)

Agenda

• Logic: propositional logic, predicate logic

• Logic Programming

• Ontology as Logical Theory about World

• Ontology Reasoning and Rules

• Issues: Decidability, Complexity

2

What is Logic?

• Here, our focus is on deductive formal logic

• Formal Logic as a Formal Language

• A Formal Language, just like NL, has a syntax &

semantics

• We are interested in formal logics because we can

represent our knowledge in these, machines can interpret

these, and then perform automated inference (proofs

using inference rules)

• The same inferences that humans make

3

Propositional Logic: Syntax

• PL is a Language having a Syntax & a Semantics

– A set of symbols:

• Logical Constants: True, False (or T, F)

• Logical Variables (or propositional symbols): p, q, r, …

• Logical Operators (or connectives): , , , , , (,)

– Formulas (Well-formed Formulas or WFFs) of PL (we will call these
propositions)

• Any propositional symbol is a WFF of PL

• If  and  are WFFs, then so are (  ), (  ), (  ), (  ), and ()
[and note that we will dispense with parentheses where we can]

• Nothing else is a WFF.

– So the following are WFFs: p, p, p  q, p  q, (p  q)  r

– Propositions are things that are true or false

Propositions in English:

If John is a management employee,

then John manages an organization.

John is a management employee.

John manages an organization (MP)

Propositions in PL:

p  q

p

q (MP: Modus Ponens)

Still Need

Semantics!

4

Proof Theory (Syntax) vs. Model

Theory (Semantics)
• Proof Theory: deductive apparatus of a language

– Axioms: declaring by fiat certain formulas of L

– Rules of Inference: determines which relations between formulas of L are
relations of immediate consequence of L

• i.e., from    in one step

• More generally, syntactic consequence is: iff there is a derivation in
PL of the set of formulas  from the set of formulas , written  |- 

– Apply rules to Axioms to derive Theorems

– Theorem: a formula of a formal language that satisfies purely syntactic
requirements and has no meaning

• Formal Model: a model of a formula of L is an interpretation of L for
which the formula comes out true (a proposition)

• Model Theory: the theory of interpretations of languages

– Logical Validity: ‘|= ’ means that  is a logically valid formula of PL iff
 is true for every interpretation of PL

– Semantic consequence: ‘ |= ’ means  is a semantic consequence of
 iff there is no interpretation of PL for which  is true and  is false

5

Semantics: Interpretation

• Interpretation:
– An interpretation of a formal language is an assignment of meanings to its

symbols and/or formulas [Hunter, 1973, p.6-7]

– “An interpretation of PL is an assignment to each propositional symbol

(logical variable) of one or other (but not both) of the truth values truth and

falsity” [Hunter, 1973, p. 57-58]

• Truth tables: p  (q  r)  (p  q)  (p  r)

p

q

r

p

(q  r)

p  (q  r)

(p  q)

(p  r)

(p  q) 

(p  r)

 T

T

T

F

T

T

T

T

T

T

T

F

F

F

F

T

F

F

T

F

T

F

F

F

F

T

F

 T

F

F

F

F

F

F

F

F

 F

T

T

T

T

T

T

T

T

 F

T

F

T

F

T

T

T

T

F

F

T

T

F

T

T

T

T

F

F

F

T

F

T

T

T

T

6

Some Examples

English Example Logical Translation

Implication:

(1) If pigs can fly, then dogs can talk.

(1’) P  Q

Consequence:

(2.A) If pigs can fly, then dogs can talk.

(2.B) Pigs can’t fly.

(2.C) Therefore

(2.D) Dogs can’t talk.

INVALID Conclusion!

(2.A’) P  Q

(2.B’) P

(2.C’) 

(2.D) Q

Consequence:

(3.A) If pigs can fly, then dogs can talk.

(3.D) Dogs can’t talk.

(3.C) Therefore

(3.B) Pigs can’t fly

VALID Conclusion!

(2.A’) P  Q

(2.B’) Q

(2.C’) 

(2.D) P

This inference rule is Modus

Tollens

7

Predicate Logic: To Propositional Logic,

Add Predicates, Individuals, Quantifiers

Propositions & Predicates in English:

Everyone who is a management

employee manages some

organization.

Or:

For everyone who is a management

employee, there is some organization

that that person manages.

John is a management employee.

There is some organization that John

manages. Still Need Semantics!

Propositions & Predicates in English:

If John is a management employee,

then John manages an organization.

John is a management employee.

John manages an organization (MP)

Propositions & Predicates in First

Order Predicate Logic:

x. [p(x)  y. [q(y)  r(x,y)]]

“For all x, if x is a p, then there is

some y such that y is a q, and x is in

the r relation to y”

p(john)

y. [q(y)  r(john,y)]]

 (MP: Modus Ponens)

Propositions & Predicates in First

Order Predicate Logic:

p(x)  q(x)

p(john)

q(john) (MP: Modus Ponens)

8

Semantics of Predicate Calculus

• Generalization of Truth Tables

• From Tarski, “truth with respect to a model”

• So Semantic Evaluation is Generalized

• Define the Semantics of FOL expressions (formulae)

– Interpretation: Mapping of symbols of the formal language

(predicates, functions, variables, constants) onto the modeled

domain (formal: Domain, relational Structure, or Universe)

– Valuation: Determine the bindings of variables

– Compositional (Constructive) Semantics: Determine the semantics

of complex expressions inductively based on the definition of the

semantics of basic expressions

9

Logic Programming

• Good Properties:

– Least Herbrand Model

– Fixpoint characterization

– Goal-directed proof procedures

– These features make logic a real programming language with a clear and complete

operational semantics with respect to its declarative semantics [Lloyd, 1984]

• *Horn formulas:

– Literals: p, p

– Horn Clause: clause with at most one positive literal, e.g., p1  …  pk  q

– Horn Formula: conjunction of Horn clauses

– DavisPutnam procedure (which is a heuristics for SAT) is a polynomial time algorithm for

HORNSAT

– Head :- Body, where Head is positive

– Negation as failure (see CWA) makes logic programs “nonmonotonic”

– But: Prolog can have classical negation, just can’t have explicit reference to it

– Uses SLD Calculus: “Selection”, “Linear”, “Definite”, resolution method

– **Dowling and Gallier's result: satisfiability of Horn clauses can be tested in linear time

*Vardi, Moshe. 1998. Logic in Computer Science: An Algorithmic Approach. Course notes. http://www.cs.rice.edu/~vardi/sigcse/mv2.ps.gz

**Dowling, W., Gallier, J., Linear Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae, Journal of Logic Programming 3 (1984), 267-284 10

http://www.cs.rice.edu/~vardi/sigcse/mv2.ps.gz

Prolog Fundamentals

• Horn Logic: Horn clauses & Horn rules

• Substitution, Unification: Compute compatible information

• Resolution Theorem-Proving (resolution as an inference

rule)
– Goes back to Robinson (1966), who discovered resolution inference rule &

shone light on its efficiency

• Depth-first proving/search

• Implicit quantifiers: Universal, though can have existentials

• Aside: For most theorem-provers, you use “skolemization”

for existential quantification
– Also applies to universal quantification, i.e., substitute a skolem-constant

(for unary predicates) or a skolem-function (for n-ary predicates)

– Quantifier elimination & normalization of expressions helps for efficiency

11

Declarative vs. Procedural Aspects

of Prolog
• Prolog is mostly a declarative language, vs. procedural (operational)

• Mostly declarative semantics, like logic

• Operational (procedural) semantics:

– Cut operator: developer puts a search-terminator operator in his/her

program where it is known that a search down/across, based on additional

understanding of the domain, will never be appropriate. This is human

knowledge as a kind of implicit meta-rule!

– Negation as finite failure: if something is not found in the KB, assert that

it’s not the case, i.e., is false. Note: this is NOT true logical negation!

– Prolog is order-dependent, i.e., solutions will be based on the order of

facts in the knowledge base AND the order of rules

– Rule order, in particular, is important because rules can have alternatives

and can be recursive

• Prolog and most Logic Programming languages assume Closed

World Assumption, i.e., if it is not in the KB, it doesn’t count

• Logic and Semantic Web languages assume Open World Assumption

and true logical negation

12

Facts, Rules in Prolog vs. Logic

• Facts: instantiated relations (properties)

– Could have great flexibility in how you implement logical relations; maybe too much!

– subclass(human, mammal) [human is a subclass of mammal], or

– class(human) [human is a class]

– parent(mary,john).

– female(mary).

– parent(ann,mary).

• Rules: inference steps; consider the proof syntax generalized MP

– mother(X,Y) :- parent(X,Y), female(X).

– grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

• Compare to Logic:

X: Y: parent(X,Y)  female(X) → mother(X,Y).

X: Y: Z: parent(X,Y)  parent(Y,Z) → grandparent(X,Z).

• Compared to Logic, the conclusion is given first, i.e., it’s on the left side,

it’s the Head of the Rule; the Clauses you need to prove (the individual

conjuncts or disjuncts) are on the right side.

• These structures are called Horn Clauses & Horn Rules

Remember: This

is Generalized

Modus Ponens,

i.e., consequence

NOT implication!

13

Ontology Spectrum: One View

weak semantics

strong semantics

Is Disjoint Subclass of

with transitivity

property

Modal Logic

Logical Theory

Thesaurus
 Has Narrower Meaning Than

Taxonomy
Is Sub-Classification of

Conceptual Model
 Is Subclass of

DB Schemas, XML Schema

UML

First Order Logic

Relational

Model, XML

ER

Extended ER

Description Logic

DAML+OIL, OWL

RDF/S
XTM

Syntactic Interoperability

Structural Interoperability

Semantic Interoperability

14

Ontology as Logical Theory

• A set of axioms designed to account for the intended
meaning of a vocabulary

• Axioms are designed such that the set of its models
approximates the set of intended models of L according to
ontological commitment K

• So, an ontology is a logical theory accounting for the
intended meaning of a formal vocabulary (ontological
commitment to a particular conceptualization of the world)

• Axioms, inference rules, theorems, theory

15

Logical Theories: More Formally

* N. Guarino. 1998. Formal ontology in information systems, pp. 3-15. In Formal Ontology in Information Systems, N.

Guarino, ed., Amsterdam: IOS Press. Proceedings of the First International Conference (FOIS’98), June 6-8, Trent, Italy. p. 7

Conceptualization C

Models M(L)

Ontology

Language L

Intended models IM(L)

16

Axioms, Inference Rules, Theorems,

Theory
Theory

Theorems

(1) Theorems are

licensed by a

valid proof using

inference rules

such as Modus

Ponens

(3) Possible

other theorems

(as yet

unproven)

Axioms

(2) Theorems

proven to be true

can be added back

in, to be acted on

subsequently like

axioms by

inference rules

(4) Ever

expanding

theory

17

Axioms Inference Rules Theorems

Class(Thing)

Class(Person)

Class(Parent)

Class(Child)

If SubClass(X, Y) then X

is a subset of Y. This also

means that if A is a

member of Class(X),

then A is a member of

Class(Y)

SubClass(Person, Thing)

SubClass(Parent, Person)

SubClass(Child, Person)

ParentOf(Parent, Child)

NameOf(Person, String)

AgeOf(Person, Integer)

If X is a member of Class

(Parent) and Y is a

member of Class(Child),

then  (X Y)

And-introduction: given P, Q,

it is valid to infer P  Q.

Or-introduction: given P, it is

valid to infer P  Q.

And-elimination: given P  Q,

it is valid to infer P.

Excluded middle: P  P (i.e.,

either something is true or its

negation is true)

Modus Ponens: given P  Q,

P, it is valid to infer Q

If P  Q are true, then so is P  Q.

If X is a member of Class(Parent),

then X is a member of Class(Person).

If X is a member of Class(Child),

then X is a member of Class(Person).

If X is a member of Class(Child),

then NameOf(X, Y) and Y is a String.

If Person(JohnSmith), then

 ParentOf(JohnSmith, JohnSmith).

18

Ontology Representation Levels

Level Example Constructs
Knowledge

Representation (KR)

Language (Ontology

Language) Level:
Meta Level to the

Ontology Concept

Level

Class, Relation, Instance,

Function, Attribute,

Property, Constraint, Axiom,

Rule

Ontology Concept

(OC) Level:
Object Level to the KR

Language Level,

Meta Level to the

Instance Level

Person, Location, Event,

Parent, Hammer, River,

FinancialTransaction,

BuyingAHouse, Automobile,

TravelPlanning, etc.

Ontology Instance

(OI) Level:
Object Level to the

Ontology Concept

Level

Harry X. Landsford III, Ralph

Waldo Emerson, Person560234,

PurchaseOrderTransactionEve

nt6117090, 1995-96 V-6 Ford

Taurus 244/4.0 Aerostar

Automatic with Block Casting #

95TM-AB and Head Casting

95TM

Meta-Level to

Object-Level

Meta-Level to

Object-Level

Language

Ontology

(General)

Knowledge

Base

(Particular)

19

Ontology Example from Electronic Commerce: the general domain of

machine tooling & manufacturing; note that these are expressed in

English, but usually would be in expressed in a logic-based language

Concept Example

Classes (general

things)

Metal working machinery, equipment and supplies, metal-

cutting machinery, metal-turning equipment, metal-milling

equipment, milling insert, turning insert, etc.

Instances (particular

things)

An instance of metal-cutting machinery is the “OKK KCV

600 15L Vertical Spindle Direction, 1530x640x640mm

60.24"x25.20"x25.20 X-Y-Z Travels Coordinates, 30

Magazine Capacity, 50 Spindle Taper, 20kg 44 lbs Max Tool

Weight, 1500 kg 3307 lbs Max Loadable Weight on Table,

27,600 lbs Machine Weight, CNC Vertical Machining

Center”

Relations: subclass-of,

(kind_of), instance-of,

part-of, has-geometry,

performs, used-on, etc.

A kind of metal working machinery is metal cutting

machinery,

A kind of metal cutting machinery is milling insert.

Properties Geometry, material, length, operation, ISO-code, etc.

Values: 1; 2; 3; “2.5”, inches”; “85-degree-diamond”; “231716”;

“boring”; “drilling”; etc.

Rules (constraints,

axioms)

If milling-insert(X) & operation(Y) & material(Z)=HG_Steel

& performs(X, Y, Z), then has-geometry(X, 85-degree-

diamond).

[Meaning: if you need to do milling on High Grade Steel,

then you need to use a milling insert (blade) which has a 85-

degree diamond shape.]
 20

Areas of

Interest

Middle Ontology
(Domain-spanning

Knowledge)

Most General Thing

Upper Ontology
(Generic Common

Knowledge)

Person Roles

Processes

Organizations

Locations

Lower Ontology
(individual domains)

Businessman
Financier

Lowest Ontology
(sub-domains)

IBM

But Also These!

Upper, Middle, Domain Ontologies

Commercial
Org

ILOG
Developer

Time

Part

Identity

Space

Material

Facilities

21

Ontology Content Architecture:

More Complex View

Epistemological Data Layer: Schema + Tuples

Ontology Individual (Instance) Layer

Ontology Universal (Class) Layer

Knowledge Representation Language Layer (Abstract Core Ontology)*

Abstract Top Ontology Layer (Set Theory, Category Theory)*

* Adapted from: Herre, Heinrich, and Frank Loebe. 2005. A Meta-ontological Architecture for Foundational Ontologies. In: R.

Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1398–1415, 2005. Springer-Verlag Berlin Heidelberg.

Instantiation

Relation

Instantiation

Relation

Grounding

Relation

Evidenced By

Relation

22

Ontology Spectrum

weak semantics

strong semantics

Is Disjoint Subclass of

with transitivity

property

Modal Logic

Logical Theory

Thesaurus
 Has Narrower Meaning Than

Taxonomy
Is Sub-Classification of

Conceptual Model
 Is Subclass of

DB Schemas, XML Schema

UML

First Order Logic

Relational

Model, XML

ER

Extended ER

Description Logic

DAML+OIL, OWL

RDF/S
XTM

Syntactic Interoperability

Structural Interoperability

Semantic Interoperability

Logic Spectrum

will cover this area

23

Logic Spectrum

less expressive

most expressive

Second Order Logic (SOL)

Propositional
Logic (PL)

First-Order Logic (FOL):
Predicate Logic, Predicate
Calculus

Higher Order Logic (HOL)

Modal Propositional
Logic

Modal Predicate Logic
(Quantified Modal
Logic)

Logic Programming
(Horn Clauses)

Description Logics

24

Logic Spectrum: Classical Logics:

PL to HOL

less expressive

most expressive

Second Order Logic (SOL)

Propositional
Logic (PL)

Propositions (True/False) + Logical Connectives (, , , , )

First-Order Logic (FOL):
Predicate Logic, Predicate
Calculus

Higher Order Logic (HOL)

PL + Predicates + Functions + Individuals +

Quantifiers (, ) over Individuals

FOL + Quantifiers (, ) over

Predicates

Modal Propositional
Logic

Modal Predicate Logic
(Quantified Modal
Logic)

PL + Modal operators (, ): necessity/possibility, obligatory/permitted,

future/past, etc. Axiomatic systems: K, D, T, B, S4, S5

FOL + Modal operators

SOL + Complex Types +

Higher-order Predicates

(i.e., those that take one

or more other predicates

as arguments)

Logic Programming
(Horn Clauses)

Substructural Logics: focus on structural rules

Syntactic Restriction of FOL

Decidable fragments of FOL: unary predicates

(concepts) & binary relations (roles) [max 3 vars]
Description Logics

25

Logic Spectrum: Extending Logic

less expressive

most expressive

Second Order Logic (SOL)

Propositional
Logic (PL)

First-Order Logic (FOL):
Predicate Logic, Predicate
Calculus

Higher Order Logic (HOL)

Modal Propositional
Logic

Modal Predicate Logic
(Quantified Modal
Logic)

Logic Programming
(Horn Clauses)

Intuitionistic, Other Non-Classical Logics

Probabilistic Logics

Description Logics

Substructural Logics: focus on structural rules

26

Logic Spectrum: Languages:

Ontologies & Rules

less expressive

most expressive

Second Order Logic (SOL)

Description Logics

Propositional
Logic (PL)

First-Order Logic (FOL):
Predicate Logic, Predicate
Calculus

Higher Order Logic (HOL)

Modal Propositional
Logic

Modal Predicate Logic
(Quantified Modal
Logic)

Logic Programming
(Horn Clauses)

OWL Lite

OWL DL

OWL Full

Almost SHIF(D) (technically, it’s a variant of SHIN(D)

Mostly SHOIN(D): Close to the SHIQ and SHOQ

Almost FOL, but Classes as Instances goes to SOL

RDF/S Positive existential subset of FOL: no negation, universal

quantification

SWRL RIF
* RuleML

* Expressed syntactically in XML, requires binding to a logic, ranges over all logics

Substructural Logics: focus on structural rules

Linear Logic: consume antecedents

SOL extensions Common Logic (CL)
Knowledge Interchange Format (KIF)

27

Semantic Web Rules: RuleML, SWRL (RuleML +

OWL), RIF

Rules

Reaction Rules Transformation Rules

Derivation Rules

Facts Queries

Integrity Constraints

RuleML

Rule

Taxonomy*

*Adapted from Harold Boley, Benjamin
Grosof, Michael Sintek, Said Tabet, Gerd
Wagner. 2003.
RuleML Design, 2002-09-03: Version 0.8.
http://www.ruleml.org/indesign.html

• Reaction rules can be reduced to general rules that return no value. Sometimes these are called

“condition-action” rules. Production rules in expert systems are of this type

• Transformation rules can be reduced to general rules whose 'event' trigger is always activated. A

Web example of transformation rules are the rules expressed in XSLT to convert one XML

representation to another. “Term rewrite rules” are transformation rules, as are ontology-to-ontology

mapping rules

• Derivation rules can be reduced to transformation rules that like characteristic functions on success

just return true. Syntactic A |P B and Semantic Consequence A |=P B are derivation rules

• Facts can be reduced to derivation rules that have an empty (hence, 'true') conjunction of premises.

In logic programming, for example, facts are the ground or instantiated relations between “object

instances”

• Queries can be reduced to derivation rules that have – similar to refutation proofs – an empty (hence,

'false') disjunction of conclusions or – as in 'answer extraction' – a conclusion that captures the

derived variable bindings

• Integrity constraints can be reduced to queries that are 'closed' (i.e., produce no variable bindings) 28

So Which Rules Are Useful,

Good, Bad, Ugly?

 Good
– Logical rules are declarative, confirmable by human beings, machine

semantically-interpretable, non-side-effecting

– Logical rules can express everything that production (expert system)

rules, procedural rules can

– Logical rules can express business, policy rules, static/dynamic rules

 Bad
– Rules expressed in procedural code if-then-else case statements are

non-declarative, inspectable by human beings, confirmable with

documentation and observance of conformance to documentation,

side-effecting (ultimate side-effect: negating a value and returning

true for that value)

 Ugly
– Expert systems rules “simulate” inference, are pre-logical, have side-

effects, tend toward non-determinism, force all knowledge levels to

the same level (this is why ontologies and ontological engineering

came about), are horrible to debug 29

Issues: Expressivity

• What do you want to do with your KR language?
– Build an ontology, build a knowledge base

– Check consistency of your knowledge

– Check completeness of your knowledge

– I.e., Model checking, model finding

– Automatically classify new concepts, assertions

– Query the KB (search & navigation)

– Perform other inference
• Deduction

• Induction

• Abduction

– Add probabilistic reasoning

30

Issues: Negation

• Example: First-order positive existential conjunctive logic restricted to
binary relations: e.g., RDF/S

• Negation

– Open World Assumption: can always add more facts

– Closed World Assumption (negation by finite failure): whatever is in
the database, possibly extended by dynamic (but finite) assertions
up to some point determines what is the case

• If X is not provable from theory/found in the database, then NOT X is
true

• One problem: Theory could be inconsistent (from Cadoli & Eiter, 1998,
p. 63): T={a b}, CWA(T)={a b, a, b}

– Generalized CWA: inference from minimal models

• T={a b}, CWA(T)={a b}

– Negation (by finite failure) makes logic programs “nonmonotonic”

• Classical logic: add an axiom to a 1st order theory, can derive new
theorems, no previously proved theorems need to be reproved

• But adding a rule to a logic program may force some retractions

31

Issues: Tractability (Complexity)

• Descriptive Complexity: part of Finite Model Theory (MT of finite
structures) a branch of Logic and Computer Science

• Decidable, Semi-decidable:
– Decidable: there is an effective method for telling whether or not each formula of a

system is a theorem of that system or not

– Semi-decidable: If a formula really is a theorem of a system, eventually will be able to
prove it is, but not if it is not: may never terminate

• Complexity Classes

RE (semi-decidable): Recursively enumerable

EXPSPACE: Exponential space Intractable

NEXP: Nondeterministic exponential time

EXP: Exponential time

———————————————————————

PSPACE: Polynomial space Probably Intractable

NP: Nondeterministic polynomial time

———————————————————————

P: Polynomial time Tractable

32

Issues: Tractability (Complexity)

*http://www.cs.umass.edu/~immer

man/descriptive_complexity.html

33

Issues: Formal Properties

• Satisfiability: whether a representation is consistent (Note: inference in
the formalism has this cost)

• Entailment: whether a formula follows from another formula

• Soundness: any expression that can be derived from the KB is
logically implied by that KB

• Completeness: any expression that is logically implied by the KB can
be derived

• Decidability: can a sound and complete algorithm be constructed?

• Complexity: is it tractable (worst-case polynomial time) or intractable?

• Expressivity: roughly: expressivity and tractability are inversely
proportional

– some expressive formalisms may be intractable or even undecidable

• Model Checking: whether a state is consistent with the knowledge

• Model Finding: can find a coherent state of the knowledge?



34

• Next: Benjamin Grosof will provide

more detail

35

Thanks!

Backup

36

Equivalences

Law of Negation:

 p  p

Combining a Variable with itself:

p  p  TRUE Excluded Middle

p  p  FALSE Contradiction

p  p  p Idempotence of 

p  p  p Idempotence of 

Properties of Constants:

p  TRUE  TRUE

p  FALSE  p

p  TRUE  p

p  FALSE  FALSE

DeMorgan’s Laws:

(Distributing negation over a

complex expression, with

change of the operator of that

expression)

(p  q)   p   q

 (p  q)   p   q

Subsumption:

p  (p  q)  p

Conditional Law:

p  q  p  q

Biconditional Law:

p  q  (p  q)  (q  p)

Contrapositive Law:

p  q  q  p

Commutativity:

p  q  q  p

p  q  q  p

Associativity:

p  (q  r)  (p  q)  r

p  (q  r)  (p  q)  r

Distributivity:

p  (q  r)  (p  q)  (p  r)

p  (q  r)  (p  q)  (p  r)

37

Example Prolog: Transitive Closure (is

Subsumed By)

• Facts:
superClass(a, b).

superClass(a1, b).

superClass(b, c).

superClass(c, d).

superClass(d, e).

superClass(e, f).

superClass(b, c2).

superClass(e, c2).

superClass(c2, d2).

superClass(d2, e2).

superClass(e2, f2).

superClass(a, b2).

superClass(b2, c3).

superClass(c3, d3).

• Rules:
ancestor(X,Y) :- superClass(X,Y).

ancestor(X,Y) :- superClass(X,Z), ancestor(Z,Y).

• We assert the above by either consulting a file (batch mode) or
entering these in interactively (former is preferred!)

 38

Example: Transitive Closure (is Subsumed

By) Results

• Results can be written to a file/database or displayed on screen

• Assume the previous file was called transClosure.pro was loaded

(consulted).

• Then the query was executed:

test1(L);

Consulting Source Files: 'transClosure.pro'

Type 'quit.' to End

?- test1(L).

L = [[a, b], [a1, b], [b, c], [c, d], [d, e], [e, f], [b, c2], [e, c2], [c2, d2], [d2, e2],

[e2, f2], [a, b2], [b2, c3], [c3, d3], [a, c], [a, c2], [a, d], [a, e], [a, f], [a, c2],

[a, d2], [a, e2], [a, f2], [a, d2], [a, e2], [a, f2], [a1, c], [a1, c2], [a1, d], [a1, e],

[a1, f], [a1, c2], [a1, d2], [a1, e2], [a1, f2], [a1, d2], [a1, e2], [a1, f2], [b, d],

[b, e], [b, f], [b, c2], [b, d2], [b, e2], [b, f2], [c, e], [c, f], [c, c2], [c, d2], [c, e2],

[c, f2], [d, f], [d, c2], [d, d2], [d, e2], [d, f2], [b, d2], [b, e2], [b, f2], [e, d2], [e,

e2], [e, f2], [c2, e2], [c2, f2], [d2, f2], [a, c3], [a, d3], [b2, d3]] ;

no
?-

39

Rules of Inference:
Note that P & Q in the following can each be a

simple or complex expression
Modus Ponens

p q

p

———

q

Introduction

p  q

q  p

———

p  q

Case Analysis

(sometimes called 

Elimination)

p  q

p  r

q  r

———

r

 Introduction

p

q

———

p  q

 Introduction

p

q

———

p  q

Substitution

(when )



———



Modus Tollens

p  q

q

———

p

Contrapositive

p  q

———

q  p

Vacuous Proof

p

———

p  q

 Elimination

p  q

———

p

Contradiction

p

p

———

FALSE

Tautology

(when 

TRUE)

———



NOTE: the

following two rules

have assumptions

and so indentation

is necessary

above the line.

Reduction to

Absurdity

 [p]

 FALSE

——————

p

Introduction

 [p]

 q

——————

p  q 40

Prolog vs. Logic

• Prolog does backward-chaining

– Go from the theorem you want to prove & prove its dependent

components

– As opposed to forward-chaining, in which you prove the components &

those solutions are posted on some global space (data structure), which

other forward rules then can have at

• Prolog assumes Universal Quantification: builds it in, so every

query/rule is universally quantified, by default

• Prolog will return the first satisfying values, then if you request more,

all the remainders

– There are also Prolog constructs to just do all the solutions & find all the

values (FINDALL)

• Remember: queries are like theorems

– The difference? Proven theorems return T or F; queries return the

bindings which make those true theorems true

41

Example: Axioms on Social Roles 1

• Descriptions and Concepts

(A1) DS(x)  NASO(x)

(A2) CN(x)  NASO(x)

(A3) DS(x)  CN(x)

• Concept Use and Definition

(A4) US(x, y)  (CN(x)  DS(y))

(A5) DF(x, y)  US(x, y)

(A6) CN(x)  y(DF(x, y))

(A7) DS(x)  y(US(y, x))

(A8) (DF(x, y)  DF(x, z))  y = z

(A9) US(x, y)  (PRE(y, t)  PRE(x, t))

(A10) DF(x, y)  (PRE(x, t)  PRE(y, t))

(T1) DF(x, y)  (CN(x)  DS(y)) (A4),(A5)

(T2) CN(x)  !y(DF(x, y)) (A6),(A8)

(T3) DF(x, y)  (PRE(x, t)  PRE(y, t)) (A5),(A9),(A10)

42

Masolo, Claudio; Laure Vieu; Emanuele Bottazzi; Carola Catenacci; Roberta Ferrario; Aldo Gangemi; Nicola Guarino. 2004. Social Roles and their

Descriptions, Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press, 2004.

Example: Axioms on Social Roles 2

• Classification

(A11) CF(x, y, t)  (ED(x)  CN(y)  TL(t))

(A12) CF(x, y, t)  PRE(x, t)

(A13) (CF(x, y, t)  DS(x))  US(y, x)

(A14) CF(x, y, t)   CF(y, x, t)

(A15) (CF(x, y, t)  CF(y, z, t))  CF(x, z, t)

• Anti-Rigidity

(D1) AR(x) df y,t(CF(y, x, t)  t'(PRE(y, t')  CF(y, x, t')))

• Founded

(D2) FD(x)) df y,d(DF(x, d)  US(y, d) Ÿ

 z,t(CF(z, x, t) 

 z'(CF(z', y, t)  P(z, z', t)  P(z', z, t)))

• Role

(D3) RL(x)) df AR(x)  FD(x)

43

Reaction Rules (Event-Condition-Action)

Reaction rules can be reduced to general rules that return no value. Sometimes

these are called “condition-action” rules. Production rules in expert systems are

of this type. Note that these are similar to logical derivation rules but are side-

effecting (state-changing), i.e., non-monotonic

General rule form: Condition  Conclusion, i.e., If Condition Then Conclusion

Reaction rule form: Event-Condition-Action

Event: some occurrence triggers or invokes the rule

Condition: the rule fires and the condition gets evaluated. The condition can be

anything but in general represents a particular state, i.e., if a property or set of

properties hold.

Action: if the condition is met, then the action is performed

In general, the action can arbitrarily change the state of the rule environment,

thus is non-monotonic

Example: If (boiler.pressure > 1000 lbs/sq in) then (boiler.state = shutdown)

If the boiler pressure is greater than 1000 lbs/sq in, shut the boiler down

44

Transformation Rules

Transformation rules can be reduced to general rules whose 'event' trigger is

always activated. A Web example of transformation rules are the rules expressed

in XSLT to convert one XML representation to another. “Term rewrite rules” are

transformation rules, as are ontology-to-ontology mapping rules

General rule form: LeftHandSide  RightHandSide

LeftHandSide: a formal language expression

RightHandSide: a formal language expression

Context Free grammar rules (also [Extended] Backus-Naur, etc.) are like this:

S  a b

S  a S

Equivalence rules in Logic, Mathematics: e.g., DeMorgan’s Laws:

¬ (P  Q) = (¬ P)  (¬ Q) 2 * (3 + 4) = (2 * 3) + (2 * 4)

¬ (P  Q) = (¬ P)  (¬ Q)

General Rewrite Rules:

A, B  B A

 45

Derivation Rules

Derivation rules can be reduced to transformation rules that like

characteristic functions on success just return true. Syntactic A |P B

and Semantic Consequence A |=P B are derivation rules

General rule form: Antecedent | Consequent (syntactic

consequence)

Example: Modus Ponens

X, X  Y | Y

46

Facts, Queries, Integrity Constraints

• Facts can be reduced to derivation rules that have an empty (hence, 'true')

conjunction of premises. In logic programming, for example, facts are the

ground or instantiated relations between “object instances”

• General rule form: | Consequent (syntactic consequence)

• Example: father (johnSmith, marySmith)

• | Y

• Queries can be reduced to derivation rules that have – similar to refutation

proofs – an empty (hence, 'false') disjunction of conclusions or – as in

'answer extraction' – a conclusion that captures the derived variable bindings

• General rule form: Antecedent |  (syntactic consequence)

• Example: person (X), person (Y), father (X, Y)?

• X |

• Integrity constraints can be reduced to queries that are 'closed' (i.e., produce

no variable bindings)

47

Example: Inference and Proof

subProperty

Given... And...

motherOf

Can conclude...

parentOf

motherOf

Mary

Bill

parentOf

Mary

Bill

A simple inferencing example from “Why use OWL?” by Adam Pease, http://www.xfront.com/why-use-owl.html

Deduction A method of

reasoning by which one infers

a conclusion from a set of

sentences by employing the

axioms and rules of inference

for a given logical system.

Infer:

Given:

Proof Using Inference Rule of Modus Ponens

If motherOf is a subProperty of parentOf,

and Mary is the mother of Bill, then Mary

is the parentOf Bill

motherOf is a subProperty of parentOf

Mary is the motherOf Bill

Mary is the parentOf Bill

48

Rule Interchange Format (RIF)*

• RIF is a rule language based on XML syntax

• RIF provides multiple versions, called dialects:

– Core: the fundamental RIF language, and a common subset of

most rule engines (It provides "safe" positive datalog with builtins)

– BLD (Basic Logic Dialect): adds to Core: logic functions, equality

in the then-part, and named arguments (This is positive Horn logic,

with equality and builtins)

– PRD (Production Rules Dialect): adds a notion of forward-

chaining rules, where a rule fires and then performs some action,

such as adding more information to the store or retracting some

information (This is comparable to production rules in expert

systems, sometimes called condition-action, event-condition-

action, or reaction rules)

•http://www.w3.org/TR/rif-overview/

•http://www.w3.org/2005/rules/wiki/RIF_Working_Group

•http://www.w3.org/2005/rules/wiki/RIF_FAQ 49

RIF Dialects

RIF Core

RIF Basic Logic Dialect RIF Production Rules Dialect

RIF Framework for

Logic Dialects *

* http://www.w3.org/TR/rif-fld/

50

Description Logics

• What is a Description Logic?

– Synonyms: Terminological Logic, Concept Logic, based on Concept Language, Term

Subsumption Language

– A declarative formalism for the representation and expression of knowledge and sound,

tractable reasoning methods founded on a firm theoretical (logical) basis

– Expressive, sound & complete, decidable, classical semantics, tractable reasoning

– Function-free FOL using at most 3 variables (basic)

• A description: an expression in a formal language that defines a set of instances or

tuples

• DL: a syntax for constructing descriptions and a semantics that defines the meaning of

each description

• Components

– T-box: Terminological box – concepts, classes, predicates

• One or more subsumption hierarchies/taxonomies of descriptions

• Terminological axioms: introduce names of concepts, roles

• Concepts: denote entities

• Roles: denote properties (binary predicates, relations)

• Subsumption: comparable to matching or unification in other systems

– A-box: Assertional box – individuals, constants

• Instances in the OO world, tuples in the DB world

 51

First Order & Higher Order Logics

• FOL semi-decidable

– Decidable: there is an effective method for telling whether or not each
formula of a system is a theorem of that system or not

– Semi-decidable: If a formula really is a theorem of a system, eventually will be
able to prove it is, but not if it is not: may never terminate

• Second Order: sometimes used in linguistics

– “Tall”, “Most”, etc.

– Quantification over Individual & Predicate variables

–  ( (a)  F()): “John has an unusual property”

• CYCL has some constrained 2nd order reasoning

• Theorem-provers

– HOL, Prover9, etc.

• Prolog & Cousins

– Restricted FOL: Horn Clauses (only 1 un-negated term in a formula,
resolution method proves the contradiction of the negation of a term)

– Non-standard negation: negation by finite failure

– Closed World Assumption

– Declarative + Operational Semantics: use of Cut

• Other: Conceptual Graphs, UML, Expert System Shells, Modal Logics

 52

Limitations of FOL, Other Logics

• Expressive limitations of FOL:
– Possible non-monotonicity:

All birds can fly

All ostriches are birds

Tweety is an ostrich

—————————

*Tweety can fly NO!

• Quantifiers: Existential, Universal

• Negation: what kind?

• Other:
– Generalized Quantifiers

– Types & Sorts

– Probabilistic Reasoning

– Possibilistic Reasoning

– Etc.

53

Issues: Tractability (Complexity)

• Intractable: exponential in the worse case (meaning some are hard to
solve)

– What is more typical (average?) case?

• Satisfiability decision process (SAT): NP-complete

– NP-complete: can be solved by a nondeterministic Turing Machine in
polynomial time, with the additional property that it is also NP-hard (solving
it in polynomial time would make it possible to solve all problems in class
NP in polynomial time)

– FO SAT is co-RE-complete (co: complementary)

• Syntactic restrictions:

– Horn Clause formulae: SAT is polynomial

– x,…, y,….  with no functions symbols: NEXP-complete

– Some relations on finite models expressible in FOL

• Graphs: symmetric, transitive, ok

• But not: Is graph A the transitive closure of graph B?

54

