Enhancing Organism Based Disease Knowledge Using Biological Taxonomy, and Environmental Ontologies

Ken Baclawski
Northeastern University
Neil Sarkar
Marine Biological Laboratory
Research Issues

- Biomedical knowledge relevant to the study of infectious diseases is currently in a variety of heterogeneous data sources
 - Citation databases
 - Health reports
 - Molecular databases

- Understanding infectious diseases requires
 - Environmental and geo-location
 - Biodiversity and biomedical resources
Disease Knowledge Sources

- Research Literature Citation Indexes
 - Medline of the US National Library of Medicine
 - Agricola of the US National Agricultural Library

- Health Reports
 - Global Outbreak Alert and Response Network (GOARN) of the World Health Organization
 - Program for Monitoring Emerging Diseases (ProMED) of the International Society for Infectious Diseases
Biodiversity Sources

- Biodiversity Heritage Library
- Global Biodiversity Information Facility (GBIF) hosted by the University of Copenhagen
- Encyclopedia of Life
- Many others…
Some Background Ontologies

- **NCBI Taxonomy of the US National Center for Biotechnology Information**
 - Alpha taxonomy associated with molecular data (GenBank)

- **Environmental ontology (EnvO)**
 - Emerging Open Biomedical Ontology (OBO) of biological habitats

- **Geo-location instance hierarchy (Gaz)**
 - Emerging OBO instance hierarchy of geo-locations
Example of integration of disease knowledge, genetic information, biodiversity information and geographical information

Geographic distribution of hantavirus disease outbreaks (boxes) and genetic samples (helices)
OOR Hosted Ontology

- Union of Biological Taxonomy (uBiota)
- Derived from these sources:
 - NCBI Taxonomy
 - Species2000
 - Integrated Taxonomic Information System
- Only Considers Linnaean Ranks
 - Kingdom (8); Phylum (140); Class (324); Order (1464); Family (8801); Genus (148,459); Species (1,451,748)
Developer Requirements

- **Must have** the ability to browse and query small segments of an ontology.
- **Good to have** the ability to dynamically curate and suggest changes via the user community.
- **Ideally, it can** be used to navigate across inferred information that is associated with a small set of terms and that comes from many ontologies.
End User Requirements

- **Must have**
 - Ability to efficiently navigate multiple hierarchies
 - Consistency across multiple ontologies

- **Good to have**
 - Ability to provide live feedback
 - Allow annotating relationships or propose new terms

- **Ideally, it can**
 - Support scientific hypothesis testing