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ISO Common Logic

The recently published ISO Common Logic standard 
provides an unusually 'relaxed' syntax for FOL, one 
which removes many of the commonly assumed 
constraints on FOL syntax. This wild west syntax 
provides many new opportunities for describing 
mappings between axioms in different 
ontologies.

2



FOL syntax

In a conventional FOL language (here referred to as 
GOFOL), there are three syntactic kinds of symbols: 
individual, function and relation names, and usually the 
last two are further divided by arity (number of 
arguments) and sometimes they are further subdivided 
into types or sorts. All this classification of the 
vocabulary is called a signature, and GOFOL 
languages are required to have a signature.

CL does away with all this. The only 'signature' 
required is a single set of names. 

3



Wild West syntax
In CL, there are two basic assumptions: any name 
can be used for any purpose; and anything that has a 
name is in the universe of discourse. So we can use a 
name to refer to, say, a relation with one argument 
and a function with seven arguments and an 
individual. Anything at all can be treated as an 
individual (of course) but also as a function and as a 
relation, and this always makes logical sense. 

We call this 'wild west syntax' because, just like in 
the movies, there are no laws on the frontier. 
Anything goes. 
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Silly Example
These are syntactically legal CL (in the CLIF 
dialect of CL, which we will use from now on):

         (P (P P))
    ((P P)(P P))
    (exists (x)((x x)(x x)))

And are even satisfiable. The first says that P is 
a function which, when applied to itself, has a 
value of which it, itself, is true. For example 
(using the lambda-calculus), [lambda x. true] 
would satisfy this CL sentence. 
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CL really is FOL

    (exists (x)((x x)(x x)) )

doesn't look at a% like conventional GOFOL. If 
anything, it looks like a warped kind of higher-
order log ic , s ince i t seems to a l low 
quantification over functions and relations. 
And indeed, it does; and yet, it rea%y is first-
order. 

If you like, think of it as an alternative way of writing:

(exists (x)
   (holds (apply x x)(apply x x)) )

which is of course perfectly correct GOFOL. 
6



A pattern-maker's logic

The practical effect of all this is that one can 
write arbitrary 'patterns' in CL and quantify 
over arbitrary 'parts' of them with complete 
freedom, without worrying too hard about 
what exactly the names denote. 

Moreover, the sequence markers allow one to 
recursively define LISP-like operations on the 
syntax itself.

This is extremely useful. 
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The same relation can have different numbers of arguments: 

     (Married Jill)     (Married Jill Jack) 
    (Married Jill Jack 2003) ...

so CL allows quantification over arbitrary finite sequences, to cover all the 
cases:

(forall (r s ...)(iff 
    ((conj r s) ...)
    (and (r ...)(s ...)) 
))

We know now that these are equivalent:

((conj Married InLove) Jill Jack)
(and (Married Jill Jack)(InLove Jill Jack))

and, since we can use names for anything, we can give this a name:

(= (conj Married InLove) TrueRomance)
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First Real Example

Transforming continuant language to '4-d' language. 

(forall ((c Continuant)(t Time) R )(if
     (R c t)
     ((transf R) (slice c t)) 
))

and then in the 4d ontology one can safely add

(forall (x)(= x (transf x))

which means that one can there use the same name for 
the continuant and its sister occurrent (because there, 
they are the same thing).

This trick of applying a 'transfer function' to one 
vocabulary is widely applicable.
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Another real example: database mappings

A database table can be treated as a predicate (class) which is true of all 
the rows in the table, and each column as a function (selection function, 
property) from the row to a value. 
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Another real example: database mappings
Mappings between tables can then be described directly in CL syntax, 
even though they may seem to involve 'higher-order' constructions.

T1

C D E F

x

T2

G H U

x

(FromTo E H)

(Forall ((r T))(= (E r) (H ((FromTo E H) r)) ))
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(forall ((r T))(= (E r)(H ((FromTo E H T) r)) ))

row r

subset T
of rows
on which
mapping 

is defined

(FromTo E H T)

T1 = (TableOf E) T2 



Another real example: database mappings

Cases like mappings on subsets of rows, compositional mappings, etc. are straightforward:

(forall (S T)(iff (SubTable S T)(forall (x)(if (S x)(T x))) ))
(forall ((r S) E H)(= (E r)(H ((FromTo E H) r)) ))  
(forall ((r S) a b)(= ((FromTo a b) r)((FromTo a b S) r) ))
(forall (x)(= ((comp f g) x)(f (g x)) ))

These axioms are somewhat naive in that they assume that the relevant mappings always exist 
and are unique. A more careful approach could treat (FromTo a b S) as a predicate on 
mapping functions:

(forall (S E H m)(iff 
       ((FromTo E H S) m)
       (forall ((r S))(= (E r)(H (m r))))    ))

(forall (a b)(= (FromTo a b)(FromTo a b (TableOf a)) ))

(forall (f g A B S)(if 
          (and ((FromTo A B S) f)((FromTo B C) g))
          ((FromTo A C S) (comp g f))                ))
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OWL-DL in CL
(forall (x y ...)(iff (owl:allDifferent x y ...)(and (not (= x y)(owl:allDifferent y ...)
(owl:allDifferent x ...)) ))
(forall (x)(owl:allDifferent x))
(forall (f)(iff (owl:FunctionalProperty f)(forall (x y z)(if (and (f x y)(f x z))(= y z) )) ))
(forall (f)(iff (owl:InverseFunctionalProperty f)(forall (x y z)(if (and (f y x)(f z x))(= y z) )) ))
(forall (x)(and (not (owl:Nothing x))(owl:Thing x) ))
(forall (f)(iff (owl:SymmetricProperty f)(forall (x y)(iff (f x y)(f y x))) ))
(forall (f)(iff (owl:TransitiveProperty f)(forall (x y z)(if (and (f x y)(f y z))(f x z) )) ))
(forall (p c x)(iff ((owl:AllValuesFrom p c) x)(forall (y)(if (p x y)(c y)) ))
(forall (c x)(iff ((owl:complementOf c) x)(not (c x)) ))
(forall (c d)(iff (owl:disjointWith c d)(forall (x)(iff (c x)(not (d x)))) ))
(forall (c d)(iff (owl:equivalentClass c d)(forall (x)(iff (c x)(d x))) ))
(forall (c d)(iff (owl:equivalentProperty c d)(forall (x y)(iff (c x y)(d x y))) ))
(forall (p v x)(iff ((owl:hasvalue p v) x)(p x v) ))
(forall (c ...)(iff ((owl:intersectionOf c ...) x)(and (c x)((owl:intersectionOf ...) x)) ))
(forall (x)((owl:intersectionOf) x)
(forall (p x y)(iff ((owl:inverseOf p) x y)(p y x) ))
(forall (... x y)(iff ((owl:oneOf x ...) y)(or (= x y)((owl:oneOf ...) y)) ))
(forall (x)(not ((Owl:oneOf) x) ))
(forall (p c x)(iff ((owl:somevaluesFrom p c) x)(exists (y)(and (p x y)(c y))) ))
(forall (p (n Number) x)(iff 
     ((owl:maxCardinality p n) x)
     (not (exists (y ...)(and (owl:allDifferent y ...)(number n ...)((TrueOfAll p x y) ...)) ))
))
(forall (p (n Number) x)(iff 
     ((owl:minCardinality p n) x)
     (exists (...)(and (owl:allDifferent ...)(number n ...)((TrueOfAll p x) ...)) )
))
(forall (n x ...)(iff (number (succ n) x ...)(number  n ...) ))  
(number 0)
(forall (p x ...1 ...2)(iff ((TrueOfAll p ...1) x ...2)(and (p ...1 x)((TrueOfAll p ...1) ...2)) ))
(forall (p ...)((TrueOfAll p ...)))
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OWL-DL in CL

<owl:Class rdf:ID="WhiteNonSweetWine">
    <owl:intersectionOf rdf:parseType="Collection">
      <owl:Class rdf:about="#WhiteWine" />
      <owl:Restriction>
        <owl:onProperty rdf:resource="#hasSugar" />
        <owl:allValuesFrom>
          <owl:Class>
            <owl:oneOf rdf:parseType="Collection">
              <owl:Thing rdf:about="#Dry" />
              <owl:Thing rdf:about="#OffDry" />
            </owl:oneOf>
          </owl:Class>
        </owl:allValuesFrom>
      </owl:Restriction>
    </owl:intersectionOf>
  </owl:Class>

(= WhiteNonSweetWine 
  (owl:intersectionOf #WhiteWine (owl:allValuesFrom #hasSugar (owl:oneOf #Dry #OffDry))))
)

(= WhiteNonSweetWine (AND #WhiteWine (MustBe #hasSugar (OneOf #Dry #OffDry))) )
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