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Abstract. Ontohub is a repository engine for managing distributed het-
erogeneous ontologies. The distributed nature enables communities to
share and exchange their contributions easily. The heterogeneous nature
makes it possible to integrate ontologies written in various ontology lan-
guages. It supports a wide range of formal logical and ontology languages
building on the OntoIOp.org project and allows for complex inter-theory
(concept) mappings and relationships with formal semantics, as well as
ontology alignments.
Ontohub aims at satisfying a subset of the requirements for an Open On-
tology Repository (OOR). OOR is a long-term international initiative,
which has not resulted in a complete implementation so far, but estab-
lished requirements and designed an architecture. Furthermore, Ontohub
is being developed in close connection with the Distributed Ontology
Language, which is part of the emerging Ontology Integration and Inter-
operability standard OntoIOp (ISO Working Draft 17347).

1 Introduction

Ontologies play a central role for enriching data with a conceptual semantics and
hence form an important backbone of the Semantic Web. Now the number of
ontologies that are being built or already in use is steadily growing. This means
that facilities for organizing ontologies into repositories, searching, maintenance
and so on are becoming more important. Moreover, ontology alignment plays
a crucial role: alignments can relate ontologies into networks of ontologies, and
new ontologies can be created from such networks via module extraction and
combination along alignments, cf. [14].

Existing ontology search engines and repositories include search engines like
Swoogle, Watson, and Sindice. They concentrate on (full-text and structured)
search and querying. TONES [1] is a repository for OWL ontologies that provides
some metrics, as well as an OWL sublanguage analysis. BioPortal [23] is a reposi-
tory that originates in the biomedical domain, but now has instances for various
domains. Beyond browsing and searching, it provides means for commenting
and aligning ontologies. Besides OWL, also related languages like OBO are sup-
ported. NeON [2] is a toolbox for searching, selecting, comparing, transforming,
aligning and integrating ontologies. Besides OWL, also F-logic is supported.
Ontohub enjoys the following distinctive features:



– modular and distributed ontologies are specially supported,
– ontologies can not only be aligned (as in BioPortal and NeON), but also be

combined along alignments,
– logical relations between ontologies (interpretation of theories, conservative

extensions etc.) are supported,
– support for a variety of ontology languages (OWL, RDF, Common Logic,

first-order logic, relational database schemes, planned: UML, F-logic, dis-
tributed description logics, and more),

– ontologies can be translated to other ontology languages, and compared with
ontologies in other languages,

– heterogeneous ontologies involving several languages can be built,
– ontology languages and ontology language translations are first-class citizens

and are available as linked data.

Ontohub’s central means for achieving this generality is the distributed on-
tology language (DOL), introduced in the next section. Users of Ontohub can
upload, browse, search and annotate basic ontologies in various languages via a
web frontend. See Fig. 1, which shows an excerpt of logics available in Ontohub
(currently 25), and http://ontohub.org. Ontohub is open source, the sources are
available at https://github.com/ontohub/ontohub.

2 The Distributed Ontology Language (DOL) – Overview

Fig. 1. ontohub.org portal: overview of logics

The Distributed Ontology Lan-
guage (DOL), currently be-
ing standardized within the
OntoIOp (Ontology Integra-
tion and Interoperability) ac-
tivity4 of ISO/TC 37/SC 3,
aims at providing a unified
framework for (1) ontologies
formalized in heterogeneous
logics, (2) modular ontologies,
(3) links between ontologies,
and (4) annotation of ontolo-
gies.

An ontology in the Dis-
tributed Ontology Language
(DOL) consists of modules
formalized in basic ontol-
ogy languages, such as OWL
(based on description logic)
or Common Logic (based on
first-order logic with some
second-order features). These

4 For details and earlier publications, see the project page at http://ontoiop.org.
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modules are serialized in the existing syntaxes of these languages in order to fa-
cilitate reuse of existing ontologies. DOL adds a meta-level on top, which allows
for expressing heterogeneous ontologies and links between ontologies.5 Such links
include (heterogeneous) imports and alignments, conservative extensions (impor-
tant for the study of ontology modules), and theory interpretations (important
for reusing proofs). Thus, DOL gives ontology interoperability a formal ground-
ing and makes heterogeneous ontologies and services based on them amenable
to automated verification. The basic syntax and semantics of DOL can be found
in [21, 20], and the general theory of heterogeneous specifications for ontologies
in [13]. DOL uses internationalized resource identifiers (IRIs) for all its entities
in order to foster linked data compliance.

2.1 Foundations

The large variety of logics in use can be captured at an abstract level using the
concept of logic syntax, which we introduce below. This allows us to develop
results independently of the particularities of a logical system. The main idea is
to collect the non-logical symbols of the language in signatures and to assign to
each signature the set of sentences that can be formed with its symbols. For each
signature, we provide means for extracting the symbols it consists of, together
with their kind. Signature morphisms are mappings between signatures. We do
not assume any details except that signature morphisms can be composed and
there are identity morphisms; this amount to a category of signatures. Readers
unfamiliar with category theory may replace this with a partial order (signa-
ture morphisms are then just inclusions). See [20] for details of this simplified
foundation.

Definition 1. A logic syntax L = (Sign,Sen,Symbols,Kinds,Sym,kind)
consists of

– a category Sign of signatures and signature morphisms;
– a sentence functor6 Sen : Sign → Set assigning to each signature the set

of its sentences and to each signature morphism σ : Σ → Σ′ a sentence
translation function Sen(σ) : Sen(Σ)→ Sen(Σ′);

– a set Symbols of symbols and a set Kinds of symbol kinds together with a
function kind : Symbols→ Kinds giving the kind of each symbol;

– a functor Sym : Sign→ Set assigning to each signature Σ a set of symbols
Sym(Σ) ⊆ Symbols.

A logic syntax can be complemented with a model theory, which introduces
semantics for the language and gives a satisfaction relation between the mod-
els and the sentences of a signature. The result is a so-called institution [8].
Similarly, we can complement a logic syntax with a proof theory, introducing
a derivability relation between sentences, thus obtaining an entailment system
[17]. In particular, this can be done for all logics in use in Ontohub.
5 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

6 If running between partial orders, a functor is just a mapping.
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Example 1. OWL signatures consist of sets of atomic classes, individuals and
properties. OWL signature morphisms map classes to classes, individuals to in-
dividuals, and properties to properties. For an OWL signature Σ, sentences are
subsumption relations between classes, membership assertions of individuals on
classes and pairs of individuals in properties. Sentence translation along a sig-
nature morphism is simply replacement of non-logical symbols with their image
along the morphism. The kinds of symbols are class, individual, object property
and data property, respectively, and the set of symbols of a signature is the union
of its sets of classes, individuals and properties.

In this framework, an ontology O over a logic syntax L is a pair (Σ,E)
where Σ is a signature and E is a set of Σ-sentences. Given an ontology O,
we denote by Sig(O) the signature of the ontology. An ontology morphism σ :
(Σ1, E1)→ (Σ2, E2) is a signature morphism σ : Σ1 → Σ2 such that σ(E1) is a
logical consequence of E2. Several notions of translations between logics can be

Fig. 2. The part of the OWL ontology concerning mappings

introduced. In the case of logic syntaxes, the simplest variant of translation from
L1 to L2 maps L1-signatures to L2-signatures along a functor Φ and Σ-sentences
in L1 to Φ(Σ)-sentences in L2, for each L1-signature Σ, in a compatible way
with the sentence translations along morphisms. The complexity of translation
increases when a model theory or a proof theory is added to the logic syntax.
Fig. 2 shows the inferred class hierarchy below the class Mapping of the LoLa
ontology (see Sect. 2.3 below), as computed within protégé. Mappings are
split along the following dichotomies:

– translation versus projection: a translation embeds or encodes a logic into
another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms [7].
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– plain mapping versus simple theoroidal mapping [7]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatization of a transitivity predicate for properties etc.

Mappings can also be classified according to their accuracy, see [19] for de-
tails. Sublogics are the most accurate mappings: they are just syntactic subsets.
Embeddings come close to sublogics, like injective functions come close to sub-
sets. A mapping can be faithful in the sense that logical consequence (or logical
deduction) is preserved and reflected, that is, inference systems and engines for
the target logic can be reused for the source logic (along the mapping). (Weak)
exactness is a technical property that guarantees this faithfulness even in the
presences of ontology structuring operations [4].

2.2 A Graph of Logic Translations

Fig. 3 is a revised and extended version of the graph of logics and translations
introduced in [19]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between all of these logics in earlier publications [21, 19]. The definitions of the
DOL-conformance of some central standard ontology languages and translations
among them will be given as annexes to the standard, whereas the majority will
be maintained in an open registry (cf. Sec. 2.3).
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Fig. 3. The logic translation graph for DOL-conforming languages
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2.3 A Registry for Ontology Languages and Mappings

The OntoIOp standard is not limited to a fixed set of ontology languages. It
will be possible to use any (future) logic or mapping (in the sense of Sect. 2.1)
with DOL. This led to the idea of setting up a registry to which the community
can contribute descriptions of any logics and mappings. Moreover, logics can
support ontology languages (e.g. SROIQ(D) [10] supports OWL), which can in
turn have different serializations. All these notions are port of the LoLa ontology.
LoLa turns Ontohub itself into part of the Semantic Web: it is mostly written
in RDF (the data part) and OWL (the concepts), but also contains first-order
parts. We use RDF and OWL reasoners in order to derive new facts in LoLa. A
full description and discussion of the LoLa ontology can be found in [15].

Fig. 4 shows the top-level classes of LoLa’s OWL module, axiomatising log-
ics, languages, and mappings to the extent possible in OWL. Object-level classes
(that is, classes providing the vocabulary for expressing distributed ontologies)
comprise ontologies, their constituents (namely entities, such as classes and ob-
ject properties, and sentences, such as class subsumptions), as well as links be-
tween ontologies. Mappings are modelled by a hierarchy of properties corre-

Fig. 4. Top-level classes in the OWL ontology

sponding to the different types of edges in Fig. 3; see also Fig. 2. The full LoLa
ontology is available at http://purl.net/dol/1.0/rdf#.

3 Heterogeneous DOL ontologies

Many (domain) ontologies are written in DLs such as SROIQ and its profiles.
These logics are characterised by having a rather fine-tuned expressivity, ex-
hibiting (still) decidable satisfiability problems, whilst being amenable to highly
optimised implementations.

However, expressivity beyond standard DLs is required for many foundational
ontologies (as well as bio-medical ontologies), for instance Dolce7, BFO8, or
GFO9. Moreover, for practical purposes, these foundational ontologies also come
in different versions ranging in expressivity, typically between OWL (e.g. Dolce
Light, BFO-OWL) and first-order (Dolce, GFO) or even second-order logic
(BFO-Isabelle).

The relation between such different versions, OWL and first-order, may be
recorded in various ways. In some cases it is primarily discussed in the research
7 See http://www.loa.istc.cnr.it/DOLCE.html
8 See http://www.ifomis.org/bfo/
9 See http://www.onto-med.de/ontologies/gfo/
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literature, see the mereo-topological ontology of Keet [11] for an example, or
it is described in the OWL ontology within a comment, however not carrying
formal semantics. In the latter case, the comment might only contain an informal
explanation of how the OWL approximation was obtained (Dolce Light would
be an example), but it might also describe a fully formal, axiomatised first-order
extension of the OWL ontology. We here briefly describe this last scenario taking
the example of BFO-OWL, and show how this information can be faithfully
re-written into a heterogeneous DOL ontology with formal semantics.

Consider the object property ‘temporalPartOf’ found in BFO-OWL. The
OWL axiomatisation states this to be a transitive subproperty of ‘occurent-
PartOf’, and the inverse of ‘hasTemporalPart’.10 This property is however anno-
tated in a rich way, containing example usages, a richer first-order axiomatisation
of this property with pointers to the corresponding axioms in the first-order ver-
sion, as well as natural language rephrases of these axioms. The DOL ontology
below captures the logical part of this annotation as follows: the specification
‘BFO-OWL’ first lists the entire OWL axiomatisation of the ontology. In a second
step, the specification ‘BFOWithAssociatedAxioms’ imports BFO-OWL along
a translation to Common Logic, and subsequently extends the resulting first-
order version of BFO-OWL with the first-order axioms previously only listed as
comments. As a result, we obtain a two-level specification of BFO, the original
OWL part (being supported by OWL reasoners) and the full first-order part
in CLIF Common Logic syntax (amenable to first-order theorem proving and
non-conservatively extending the OWL consequences).

%prefix( : <http://www.example.org/BFO#>

owl <http://www.w3.org/2002/07/owl#>

log <http://purl.net/dol/logic/> %% descriptions of logics ...

trans <http://purl.net/dol/translations/> )% %% ... and translations

logic OWL

spec BFO-OWL =

. . .
ObjectProperty: temporalPartOf Transitive

SubPropertyOf: occurentPartOf

InverseOf: hasTemporalPart

. . .
end

logic CommonLogic

spec BFOWithAssociatedAxioms =

BFO-OWL with OWL2CommonLogic then

. . .
(forall (x y) (if (properTemporalPartOf x y)

(exists (z) (and (properTemporalPartOf z y)

10 Indeed, ‘parthood’ being typically understood as an anti-symmetric relation in mere-
ology is the canonical example of a relation that cannot be adequately formalised in
OWL, and a corresponding comment can be found in many bio-medical ontologies.
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(not (exists (w) (and (temporalPartOf w x) (temporalPartOf w z)

)))))))

(iff (properTemporalPartOf a b) (and (temporalPartOf a b) (not (= a b))))

(iff (temporalPartOf a b) (and (occurrentPartOf a b)

(exists (t) (and (TemporalRegion t) (occupiesSpatioTemporalRegion a t)))

(forall (c t1) (if (and (Occurrent c) (occupiesSpatioTemporalRegion c t1)

(occurrentPartOf t1 r))

(iff (occurrentPartOf c a) (occurrentPartOf c b))))))

. . .

Note, however, that the extension to a first-order version is not always as
straightforward as in the example just described. The first-order axioms found in
the annotation of the property ‘occurentPartOf’ contain both a binary relation
‘occurentPartOf’ as well as a ternary, temporalised relation ‘occurentPartOf’
(this is allowed in the Wild West syntax of CLIF). Whilst this also can be easily
turned into a two-level DOL specification, what is typically missing is bridging
axioms formalising the formal relationship between the temporalised and non-
temporalised version of the relation. However, adding such bridging axioms and
establishing formal interpretations between OWL and first-order versions of an
ontology is precisely a feature and the strength of the DOL language.

4 Architecture of Ontohub

The current architecture of Ontohub is shown in Fig. 5. The front-end provid-
ing the web interface is implemented in Ruby on Rails. Tomcat/Solr is used for
efficient indexing and searching. The database backend is PostgreSQL, but any
database supported by Rails could be used. The parsing and inference backend

Tomcat/Solr

Hets

PostgreSQL Filesystem

REST Administration

Apache/Rails

ActionView

ActionController

ActiveRecord

Presentation

Workflow

Persistence

Inference

Find

Fig. 5. Current architecture of Ontohub

is the Heterogeneous Tool Set (Hets [18, 22]). Hets supports a large number of
basic ontology languages and logics, and is capable of describing the structural
outline of an ontology from the perspective of DOL, which is not committed to
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one particular logic (see Sect. 2). This structural information is stored in the
Ontohub database and exposed to human users via a web interface and to ma-
chine clients as RDF linked data [9]. Beyond basic ontologies, Ontohub supports
linking ontologies, across ontology languages, and creating distributed ontologies
as sets of basic ontologies and links among them, as can be seen from the left
half of the diagram in Fig. 6, which closely corresponds to the abstract syntax
of DOL. Note that the Ontohub database schema takes advantage of another

Fig. 6. Subset of the Ontohub database schema (entity-relationship diagram using
crow’s foot notation); left side: ontologies; right side: OntoIOp registry (cf. section 2.3)
useful abstraction: Same as basic ontologies, we treat distributed ontologies as
ontologies. The entities of distributed ontologies are ontologies (basic, or, in
complex scenarios, again distributed), and their sentences are links.

The Open Ontology Repository (OOR) initiative aims at “promot[ing] the
global use and sharing of ontologies by (i) establishing a hosted registry-repository;
(ii) enabling and facilitating open, federated, collaborative ontology repositories,
and (iii) establishing best practices for expressing interoperable ontology and
taxonomy work in registry-repositories, where an ontology repository is a facil-
ity where ontologies and related information artifacts can be stored, retrieved
and managed” [24]. OOR aims at supporting multiple ontology languages, in-
cluding OWL and Common Logic. OOR is a long-term initiative, which has not
resulted in a complete implementation so far11, but established requirements
and designed an architecture, see Fig. 7.12

The key feature of the OOR architecture is the decoupling into decentralized
services, which are ontologically described (thus arriving at Semantic Web ser-
vices). With Ontohub, we are moving towards this architecture, while keeping a
11 The main implementation used by OOR is BioPortal, which however does not follow

the OOR principles very much.
12 See http://tinyurl.com/OOR-Requirement and http://tinyurl.com/OOR-Candidate3,

respectively
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Fig. 7. Architecture of the Open Ontology Repository (OOR)

running and usable system. Fig. 8 depicts the new Ontohub architecture, which
will be realized as a set of decoupled RESTful services13, while Ontohub is still
at the center of the architecture.

A federation API allows the data exchange with among Ontohub and also
BioPortal instances. We therefore have generalized the OWL-based BioPortal
API to arbitrary ontology languages, e.g. by abstracting classes and object prop-
erties to symbols of various kinds. Parsing and static analysis is a service of its
own, returning the symbols and sentences of an ontology in XML format. Hets
can do this for a large variety of ontology languages, while the OWL API does
scale better for very large OWL ontologies. That is, some enhanced services may
be provided for a restricted of ontology languages. This is also the case for pre-
sentation: while Ontohub has a language-independent presentation, WebProtégé
provides an enhanced presentation for OWL ontologies. We plan to add enhanced
presentation layers for other languages as well (e.g. following the Sigma/SUMO
environment for first-order logic). We have already integrated OOPS! as an on-
tology evaluation service (for OWL only), and from the OOPS! API, we have
derived a generalized API for use with other evaluation services.

Local inference is done by encapsulating standard batch-processing reasoners
(Pellet, Fact, SPASS, Vampire etc.) into a RESTful API, as well as through
Hets (which has been interfaced with 15 different reasoners). The integration
of interactive provers bears many challenges; a first step is the integration of
Isabelle via the web interface Clide [16] developed by colleagues in Bremen,
which currently equipped with an API for this purpose. Distributed inference is
done via Hets. For example, if an interpretation between two ontologies shall
be proved, Hets computes what this means in terms of local inferences, and
propagates suitable proof obligations to individual ontologies.

13 See http://tinyurl.com/onto-arch for detailed API specifications, however not linked
to the LoLa ontology yet. OOR already provides an ontologically enriched API.
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Fig. 8. Ontohub in a network of web services

Finally, the persistence layer is based on Git (via git-svn, also Subversion
repositories can be used). Git provides version control and branching of versions.
We have equipped Git with a web interface14, such that ontology versions can
be directly edited and committed. Moreover, users can also use a Git repository
on their local machine, and commits will be immediately available in Ontohub.

5 Alignment as Colimit Computation

Ontology matching and alignment is a key mechanism for linking the diverse
datasets and ontologies arising in the Semantic Web. The management of on-
tology alignments and especially their combination is a key novel feature of
Ontohub, hence we will delve into this topic in some more detail in this sec-
tion. Ontology matching and alignment based on statistical methods is a rela-
tively developed field, with yearly competitions since 2004 comparing the various
strengths and weaknesses of existing algorithms.15

An essential part of the matching and alignment process is to relate and iden-
tify signature elements from different ontologies (possibly formulated in different
ontology languages). In [12] we introduced a general approach for representing
alignments, based on the category-theoretical notions of diagram, colimit and
pushout. This uniformly captures various ’shapes’ of alignments previously in-
troduced in literature. The limitation of the approach in [12] is that the diagram
of ontologies to be aligned is defined only implicitly. It is remedied here.

The general alignment format introduced by the Alignment API [6] is repre-
sented in the DOL language using the following syntax:
14 See https://github.com/eugenk/bringit
15 See http://oaei.ontologymatching.org/ and the overview [25].
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alignment A t1 : t2 : O1 to O2 =

s1
1 REL1 s1

2,

. . .,
sn

1 RELn sn
2

end

where O1 and O2 are the ontologies to be aligned, t1 : t2 gives the type or the
arity of the alignment mapping and its converse, with possible values ’1’ for in-
jective and total, ’+’ for total, ’?’ for injective and ’*’ for none, si1 and si2 are
O1 and respectively O2 symbols, for i = 1, . . . , n, and si1 RELi si2 is a corre-
spondence which identifies a relation between the ontology entities, either using
a relation name or a symbol: > (subsumes), < (is subsumed), = (equivalent), %
(incompatible), ∈ (instance) or 3 (has instance).16

The semantics of alignments is given by the following definition.

Definition 2. Let A be an alignment (using the notations above). The diagram
of the alignment is of the following shape (note that the shape is a combined V-
and W-alignment in the sense of [26]):

O1 B O2

O′1

;;``

O′2

>>cc

O1_O2

σ2

HH

σ1

VV

where O1_O2 contains, for each correspondence s1 = s2 of A, a symbol s1_s2
with the same kind as s1 and s2, O′1 and O′2 contain the symbols of O1 and O2,
respectively, which appear in A in a correspondence s1 REL s2 such that REL is
not equivalence and B is an ontology constructed (in a logic-dependent manner,
according to the interpretation of the specified relations in the underlying logic)
from the relations between the elements of O′1 and O′2 specified in the alignment.
The signature morphisms σ1 and σ2 map each symbol s1_s2 to s1 and respectively
s2.

The alignment is ill-formed when it contains an equivalence between symbols
of different kinds, if B fails to be a correct ontology, or if the alignment mapping
does not have its specified arities.

Note that in some cases it is possible to optimize the shape of the diagram
to a simpler one: e.g. if the alignment mapping is functional and all the cor-
respondences are equivalences, we obtain an ontology interpretation between O1
and O2.

DOL also provides means for combining a diagram of ontologies into a new
ontology, such that the symbols related in the diagram are identified. The syntax
of combinations is
16 In the alignment API and in DOL, one can also express confidence values for corre-

spondences. We here assume that they are all 1.
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combine l1 : O1, . . . , lm : Om, M1, . . . , Mn, A1, . . . , Ap excluding M ′
1, . . . , M ′

k

where li are labels, Oi are ontologies, Mi,M
′
j are morphisms and Ai are align-

ments. The semantics of such a combination is given in terms of a colimit. We re-
frain from presenting the category-theoretic definition here (which can be found
in [3]). A diagram consists of a set ontologies and a set of ontology morphisms
between them. The colimit of a diagram is similar to a disjoint union of its on-
tologies, with some identifications of shared parts as specified by the morphisms
in the diagram.

The user specifies a diagram D formed with the ontologies Oi, the morphisms
Mi and the alignments Ai. Together with two ontologies O1 and O2, any path
of imports between O1 and O2 is included in the diagram of the combination.
The user may decide to omit some of the morphisms using the excluding list.
The semantics of the combination is then defined as the colimit of the diagram.
The role of the labels li is to distinguish between identical symbols with different
meanings: if a symbol s appears in the ontologies O1 with label l1 and O2 with
label l2, respectively, but there is no common origin for the two occurrences in
the diagram, we will obtain in the colimit the symbols l1 : s and l2 : s.

Example 2.
%prefix( : <http://www.example.org/alignment#>

owl <http://www.w3.org/2002/07/owl#>

log <http://purl.net/dol/logic/> %% descriptions of logics ...

trans <http://purl.net/dol/translations/> )% %% ... and translations

distributed-ontology Alignments

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =

Woman < Person

end

ontology AlignedOntology1 =

combine Alignment1

end

ontology Onto1 =

Class: Person

Class: Woman SubClassOf: Person

Class: Bank

end

ontology Onto2 =

Class: HumanBeing

Class: Woman SubClassOf: HumanBeing

Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =
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Person = HumanBeing,

Woman = Woman

end

ontology VAlignedOntology =

combine 1 : Onto1, 2 : Onto2, VAlignment

%% 1:Person is identified with 2:HumanBeing

%% 1:Woman is identified with 2:Woman

%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =

VAlignedOntology with 1:Bank |-> RiverBank, 2:Bank |-> FinancialBank,

Person_HumanBeing |-> Person

end

The diagram of the first alignment is

{Woman} Woman v Person {Person}

{Woman}

ff 55

{Person}

88hh

The diagram of the second alignment is

Onto1 Onto2

{Woman, Person_HumanBeing}

kk 33

The diagram of VAlignedOntology is

{Woman, Person_HumanBeing, 1 : Bank, 2 : Bank}

Onto1

22

Onto2

ll

{Woman, Person_HumanBeing}

ll 22

where the dotted arrows are automatically computed via the colimit.

6 Conclusion and Future Work

Ontohub will be the basis of several coordinated efforts: we intend to set up an
instance SpacePortal.org for ontologies in the spatial domain, and ConceptPor-
tal.org for concept blending. We also will use federation with BioPortal to inte-
grate biomedical ontologies into Ontohub. Then, with BioPortal’s rich collection
of alignments, Ontohub’s ontology combination feature can be systematically
used and evaluated. The FOIS 2014 conference will use Ontohub as platform
for uploading ontologies used in submissions; there will also be a competition.
Ontologies used in FOIS papers often need expressiveness beyond OWL; here,
the multi-logic nature of Ontohub is essential.
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Ontohub plays a double role: it is a repository for ontologies and for ontology
languages, their underlying logics, and their translations. Currently, the logics
supported by Ontohub are those supported by a corresponding Haskell imple-
mentation in the Heterogeneous Tool Set (Hets). In the future, we plan to use
a logical framework for the purely declarative specification of both logics and
translations [5], easing the integration of new logics into Ontohub and simul-
taneously providing a formal reference and a machine-processable description,
thus deepening the role of Ontohub not only being about the Semantic Web, but
also part of it.
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