OMV / CTS2
Crosswalk
Outline

• Common Terminology Services 2 (CTS2) - a brief introduction
• CTS2 and OMV – a crosswalk
OMV / CTS2 Crosswalk

CTS2 – A BRIEF INTRODUCTION
Common Terminology Services 2 CTS$_2$

A standard for a shared semantic model and API for the query, interchange and update of terminological content.

Terminological content: code sets, value sets, lexicons, thesauri, classification systems, ontologies, …
CTS2
Why?

Terminological Resources (Ontologies, classification systems, code sets, value sets…) are the “semantic backbone” of information exchange.

Examples: ICD-9, ICD-10, MEDRA, Gene Ontology, SNOMED-CT, LOINC, UNSPSC, FMA, Agrovoc, Dublin Core, SKOS, RDF, OWL, ISO Language Codes, ISO Country Codes, ...
CTS2
Why?

... thousands of institution / application specific enumerations, code sets and value sets.

• Resources published in different formats...

• ... using different grammars

• ... with different update and release cycles...
CTS2
Why?

Interoperability requires that information source and sink have the same set of shared “meaning”…

… especially as many of these resources become “logic based” (aka. Declarative Programming)
DL Foundations

Syntax

Mathematics

Interpretation

Input
TOP
BOTTOM
NUMBER
INTEGER
STRING
(and $C_1 \ldots C_n$
(or $C_1 \ldots C_n$
(not C)
(all R C)
(some R)

Syntax

Abstract

\top
\bot

$C_1 \sqcap \cdots \sqcap C_n$
$C_1 \sqcup \cdots \sqcup C_n$
$\neg C$
$\forall R : C$
$\exists R$

Extension

Δ^I
\emptyset
the numbers
the integers
the strings

$C_1^I \sqcap \cdots \sqcap C_n^I$
$C_1^I \sqcup \cdots \sqcup C_n^I$
$\Delta^I \setminus C^I$
$\{d \in \Delta^I_a | R^I(d) \subseteq C^I\}$
$\{d \in \Delta^I | R^I(d) \neq \emptyset\}$
Why It Matters

Labels, Definitions, Examples, Usage Notes, etc. are the entry point and the exit point from formal ontologies…

… but are only of value if we know where to find them.
Finding Definitions Today

RDF:

```xml
<rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate">
  <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
  <rdfs:label>predicate</rdfs:label>
  <rdfs:comment>The predicate of the subject RDF statement.</rdfs:comment>
  <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>
  <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdf:Property>
```

BFO:

```xml
<owl:Class rdf:about="&snap;FiatObjectPart">
  <rdfs:subClassOf rdf:resource="&snap;MaterialEntity"/>
  <owl:disjointWith rdf:resource="&snap;Object"/>
  <owl:disjointWith rdf:resource="&snap;ObjectAggregate"/>
  <rdfs:label rdf:datatype="&xsd;string">fiat object part</rdfs:label>
  <rdfs:comment rdf:datatype="&xsd;string">Definition: A material entity [&gray;]
  <rdfs:comment rdf:datatype="&xsd;string">Examples: upper and lower lobes
  <rdfs:comment rdf:datatype="&xsd;string">Synonyms: fiat substance part</rdfs:comment>
</owl:Class>
```
Finding Definitions Today

OCRe:

```
<owl:ObjectProperty rdf:about="&ontologies;OCRe.owl#OCRE900040">
  <rdf:type rdf:resource="&owl;FunctionalProperty"/>
  <rdfs:label rdf:datatype="&xsd;string">has anchor time</rdfs:label>
  <statistics:definition rdf:datatype="&xsd;string">The reference time point</statistics:definition>
</owl:ObjectProperty>
```

NCIt: Note multiple definitions and provenance

```
<property>
  <name>DEFINITION</name>
  <value><![CDATA[<def-source>NCI-GLOSS</def-source><def-definition>Treatment using more th</def-definition>]]></value>
</property>

<property>
  <name>DEFINITION</name>
  <value><![CDATA[<def-source>MSH2002_06_01</def-source><def-definition>Drug therapy with t</def-definition>]]></value>
</property>

<property>
  <name>DEFINITION</name>
  <value><![CDATA[<def-source>CSP2002</def-source><def-definition>combination of drugs in t</def-definition>]]></value>
</property>
```
Finding Definitions Today

The list continues – especially when you include non-OWL ontologies (SNOMED-CT for example), and classification systems, thesauri, code/value pairs, etc.
CTS2 Goals

• Specify a common model of what is common amongst these resources

• Include metadata about what the resources are for, who publishes them, how often they are released

• Create mechanisms for federation, distribution, incremental update and history
• Provide a bridge between the emerging Semantic Web community (RDF, SKOS, OWL, SPARQL) and structured models of information
OMV / CTS2 Crosswalk

CTS2 PROCESS
Developed through the Healthcare Services Specification Project (HSSP) - a collaboration between Health Level 7 (HL7) and the Object Management Group

- HL7 provides the requirements as a Service Functional Model
- OMG develops the formal specification
- HL7 adopts and validates via an HL7 Implementation Guide
Healthcare Services Specification Project (HSSP) Workflow

1. SFM
2. RFP
3. Proposed Standard
4. Final Standard
5. Corrections / Clarifications

HL7 Implementation Guide
Healthcare Services Specification Project (HSSP) Workflow

1. HL7 SFM
2. OMG RFP
3. Vendor Community Proposed Standard
4. HL7 Implementation Guide
5. Final Standard

FTF
Corrections / Clarifications

We Are Here…
CTS2 Beta Standard

CTS2 is an Application Programming Interface (API) specification.

- It defines the semantics, syntax and valid interactions that can occur
- CTS2 is *not* software - it is a “blueprint” for building and using software
- If everyone follows the blueprint (and the blueprint is sufficiently precise) then CTS2 clients and services can interoperate
CTS2 Standard as a Blueprint

CTS2 Clients

CTS2 Services
Key Points

- Based on Representational State Transfer Architectural Paradigm
- Heavily influenced by BioPortal and BioPortal REST API
- ORWG and OMV input used for model validation
- Modular Implementation – build/use only what you need
 - Resources
 - Functionality
 - Representation
Key Points (continued)

• Designed for distribution and federation (!)
• Generic – NOT healthcare specific
• Supports Semantic Web – RDF and OWL2
• Not intended to be constraining
 • Extensions are ok – in fact encouraged!
 • Purpose is not to say what can be done, but rather to say how common things can be done consistently
OMV / CTS2
Crosswalk

CTS2 CONFORMANCE POINTS
CTS2 Conformance Philosophy

• “Linear Value Proposition” (as described by Charlie Meade) – easy things are easy and complexity is proportional to gain

• Implement (or use) exactly what is needed
 • Resources
 • Functionality
 • Representation
CTS$_2$ Resource profiles

- Code System Catalog Entry
- Code System Version
- Entity Description
- Association
- Map Catalog Entry
- Map Version

- Value Set Catalog Entry
- Value Set Definition
- Concept Domain Catalog
- Concept Domain Binding
- Statement
CTS2 Conformance Points
Behavioral Perspective

• Read – direct access
• Query – search and discovery
• Import/Export – external formats
• Update – incremental update
• History – change history
• Temporal – state of service at point in time
• Maintenance – construct incremental updates
CTS2 Conformance Points
Representational Perspective

• XML
 • XML Schema
 • ISO 21090*

• JSON

• RDF*

• POJO*

* Not present in Beta 1.0 Specification
OMV / CTS2 Crosswalk

CTS2 / OMV CROSSWALK
CTS2 / OMV Crosswalk

Steps

1. A few CTS2 model details
2. CTS2 view on resource / resource version
3. Dive-down into the actual map
OMV / CTS2 Crosswalk

1. A FEW CTS2 MODEL DETAILS
Types of URI

- URI
 - PersistentURI
 - ChangeSetURI
 - LocalURI
 - DocumentURI
 - ExternalURI
 - ServiceURI
 - RenderingURI
 - DirectoryURI
NameAndMeaningReference
Associates a URI with a local “domain”

http://www.omg.org/spec/LANG#en

- Code System
- Code System Version
- ...
- Format
- Language
- ...
- Ontology Engineering Methodology
- Ontology Engineering Tool
- ...
- Reasoning Algorithm
- ...

"english"
NameAndMeaningReference example

<core:resourceType uri="http://www.w3.org/2002/07/owl#Ontology">
 <core:namespace>owl</core:namespace>
 <core:name>Ontology</core:name>
</core:resourceType>
Referencing a class/property/individual in an ontology

http://omv.ontoware.org/2005/05/ontology#Person

http://www.myoor.com/…/codesystem/omv/version/2005_05/Person

“omv” (Service KnownNamespace Directory)

“Person”

http://omv.ontoware.org/2005/05/ontology#
EntityReference Example

<core:predicate uri="http://omv.ontoware.org/2005/05/ontology/usedOntologyEngineeringTool" href="…”">
 <core:namespace>omv</core:namespace>
 <core:name>usedOntologyEngineeringTool</core:name>
</core:predicate>
Resource Description

```plaintext
class ResourceDescription

Resource

/about 1
/description 0..*

ResourceDescription

about : ExternalURI {readOnly}
describedResourceType : CTS2ResourceType {readOnly}
resourceID : LocalIdentifier {readOnly}
formalName : String [0..1]
keyword : String [0..*]
resourceType : URIAndEntityName [1..*]
resourceSynopsis : EntryDescription [0..1]
additionalDocumentation : PersistentURI [0..*]
sourceAndRole : SourceAndRoleReference [0..*]
rights : OpaqueData [0..1]
note : Comment [0..*]
property : Property [0..*]
alternateID : ExternalURI [0..*]
statement : StatementDirectoryURI [0..1] {readOnly}
::Changeable
entryID : PersistentURI {readOnly}
entryState : EntryState
status : StatusReference [0..1]
```

«enumeration»

<table>
<thead>
<tr>
<th>CTS2ResourceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE_SYSTEM</td>
</tr>
<tr>
<td>CODE_SYSTEM_VERSION</td>
</tr>
<tr>
<td>CONCEPT_DOMAIN</td>
</tr>
<tr>
<td>MAP</td>
</tr>
<tr>
<td>MAP_VERSION</td>
</tr>
<tr>
<td>VALUE_SET</td>
</tr>
<tr>
<td>VALUE_SET_DEFINITION</td>
</tr>
</tbody>
</table>

2012/01/17

OOR Metadata Workgroup
SourceAndRoleReference

dc:creator
(for page / fragment / etc...)

SOURCE
(local name)
(uri or source)
SourceAndRoleReference Example

<core:sourceAndRole>
 <core:role uri="http://purl.org/dc/elements/1.1/creator">Creator</core:role>
</core:sourceAndRole>
OMV / CTS2
Crosswalk

2. RESOURCE VS. RESOURCEVERSION
Why “CatalogEntry”

```
Leci n’est pas une pipe.
```

```
Leci n’est pas une code system
```
Code System to OMV

- acronym
- conformsToKnowledgeRepresentationParadigm
- creationDate
- description
- designedForOntologyTask
- Documentation
- endorsedBy
- hasContributor
- hasCreator
- hasDomain
- hasFormalityLevel
- hasLicense
- hasOntologyLanguage
- hasOntologySyntax
- hasPriorVersion
- isBackwardCompatibleWith
- isIncompatibleWith
- isOfType
- keyClasses
- Keywords
- knownUsage

(continued on next page)
(continued from previous page)

- name
- naturalLanguage
- notes
- numberOfAxioms
- numberOfClasses
- numberOfIndividuals
- numberOfProperties
- reference
- resourceLocator
- status
- URI
- usedOntologyEngineeringMethodology
- useImports
- version
Code System Version to OMV

- acronym
- conformsToKnowledgeRepresentationParadigm
- creationDate
- description
- designedForOntologyTask
- documentation
- endorsedBy
- hasContributor
- hasCreator
- hasDomain
- hasFormalityLevel
- hasLicense
- hasOntologyLanguage
- hasOntologySyntax
- hasPriorVersion
- isBackwardCompatibleWith
- isIncompatibleWith
- isOfType
- keyClasses
- keywords
- knownUsage

(continued on next page)
Code System Version to OMV (cont)

(continued from previous page)

- name
- naturalLanguage
- notes
- numberOfAxioms
- numberOfClasses
- numberOfIndividuals
- numberOfProperties
- reference
- resourceLocator
- status
- URI
- usedOntologyEngineeringMethodology
- useImports
- version
OMV and CTS2
Summary of Differences

- Abstract vs. Resource Version
 - CTS2 – 1..*
 - OMV - 1..1

- Naming
 - CTS2 – nouns only / pref to DC, SKOS etc.
 - OMV – mixture of nouns and verbs / OMV specific

- Model Scope
 - OMV – includes models of Party, Person Location, etc.
 - CTS2 – out of scope. Simple URI reference
OMV and CTS2 Summary of Differences (cont)

• “Value sets”
 • OMV – model for FormalityLevel, OntologyTask, OntologyType, etc.
 • CTS2 – referenced by type/URI tuple (NameAndMeaning). Additional information available in *EntityDescription* part of service if needed.

• Source and Role
 • OMV – hasCreator, hasContributor, endorsedBy
 • CTS2 – *SourceAndRole* – URI for source and URI (typically drawn from DC) for role of source
OMV and CTS2

Summary of Differences (cont)

• Unmapped OMV fields
 • `numberOfAxioms` – lacks consistent semantic interpretation and no examples present
 • `hasFormalityLevel` – CTS2/OMWG had difficulty aligning with existing content. CTS2 is coarser – skos:conceptScheme or owl:Ontology
 • `isBackwardCompatibleWith, isIncompatibleWith` – CTS2 community found (almost) no examples and saw no significant application
 • `keyClasses` – rarely available, almost always == root classes
 • `knownUsage` – thought to be of value, but was considered to be too fluid / specific to be part of catalog. (May be reconsidered)
 • `usesOntologyEngineeringMethodology` – omitted for lack of reference value set and need of further discussion
OMV and CTS2
Summary of Differences (cont)

Note on unmapped fields:

CTS2 has “property” attribute (predicate / target) [0..*] that covers the “none of the above”
OMV and CTS2
Summary of Differences (cont)

• ‘Canonical RDF’
 • CTS2 will defer to DC / SKOS / OWL / FOAF tags when overlaps exist
OMV / CTS2 Crosswalk

CURRENT STATE AND NEXT STEPS
Current State
CTS2 Specification

- CTS2 PIM / HTTP REST PSM adopted as OMG standard in June
- OMG FTF - Finalization Task Force Report due in April
 - Error correction and clarification (finish Z, much more documentation)
Current State

CTS2 Implementation Guides

• IHTSDO (SNOMED-CT) has formed a group to develop the SNOMED-CT CTS2 Implementation Guide
 • Target draft document Mar 2012

• HL7 CTS2 Implementation Guide

• Targeting RDF/OWL implementation guide middle of 2012
Reference Links

- http://informatics.mayo.edu/cts2/framework - SDK and examples
- http://informatics.mayo.edu/cts2 - overview site (old at the moment but will be updated shortly)
 - CTS2 wrapper for BioPortal XML available end of Jan
 - CTS2 wrapper for BioPortal RDF coming first half 2012
Examples

RxNorm ORWG Example -

- http://informatics.mayo.edu/exist/cts2/rest/codesystem/RxNorm
- http://informatics.mayo.edu/exist/cts2/rest/codesystem/RxNorm?format=json
- http://informatics.mayo.edu/exist/cts2/rest/codesystem/RxNorm/version/RxNorm_10AB_110307F

(Note: may have to use “show source” because of embedded HTML)
Examples

BioPortal Wrapper:

- http://informatics.mayo.edu/cts2/rest/codesystems
- http://informatics.mayo.edu/exist/cts2/rest/codesystem/NCIIm

eXist Implementation:

- http://informatics.mayo.edu/exist/cts2/rest/codesystems

BioPortal RDF Implementation (pre-alpha):

- http://informatics.mayo.edu/cts2/services/bioportal-rdf/codesystems