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IBM Watson 

  IBM Watson is an 
automated question 
answering system. 

  It competed against 
Jeopardy!’s two all-time 
greatest champions. 

 This match appeared on 
television in February of 
2011. 

 Watson won the match, 
outscoring both 
opponents combined. 

More recent work on IBM Watson focuses on business 
applications such as medicine and customer service. 
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Decision Making in Question Answering 

• Choosing answers to questions! 
•  IBM Watson generates many candidate answers 
•  For each answer, how confident are we that the answer is right? 

• Deciding whether to answer 
•  Based on how confident we are that the answer is right 
•  Based on cost/benefit of right answers and wrong answers 
 

• Deciding how many answers to provide 

• Deciding whether to hedge 
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Final Confidence Merging & Ranking 

•  Start with: 
•  Answers in isolation, with feature values 
•  Answers embedded in evidence, with feature values 

•  Configured for each feature: 
– What to do when it is missing (typically if F is missing, then set F=0 and set F-Missing=1) 
– Standardization (see next slide) 
– How to merge across instances? (Max? Min? Sum? Decaying sum?) 

•  Combine “equivalent” answers, merging feature values 
•  “frog”:f1=3,f2=4,f3=1 
•  “order Anura”:f3=3 
•  “frog”:“Frogs like ponds”:f4=0.8,f5=4.5 
•  “frog”:“I saw a frog in a pond”:f4=0.6,f5=2.5 

 
 

•  “frog”: f1=3,f2=4,f3=1,f4=1.1,f5=4.5 
•  Run ML 

•  At training time, record features and class label (right or wrong) for training a model 
•  At run time, apply the model to the features to compute a confidence score 
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Phases and Routes 

 Merging in ranking occurs in multiple phases 
 All answers to all questions are processed in all phases 
 Phases are used for sequential learning operations: cases where the outputs of 

earlier learning should influence later learning. 
  (Example on next slide) 

 Within each phase are alternative routes 
 Within a phase, all answers to a single question are processed by only one route 
 Routes are generally used for special kinds of questions 

–  In Jeopardy! this includes puzzles, multiple-choice questions, etc. 
–  In business applications in can include factoid, definition, why, how-to, and many more. 
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Phases: Answer Merging (Made-Up) Example 

Bob 
Dole 

Robert 
Dole 

Senator 
Dole 

1976: This Kansas legislator was Gerald Ford’s running mate.  

from Kansas Ford’s 
running mate 

a legislator 

These two are 
definitely the same!!! 

These might be 
the same 

Merge these two first! 

Dole 
Bananas 

available in 
Kansas 

These might also 
be the same 

Then rank the answers.  
Then merge the others. 
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(Gondek et al., 2011) 
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Learning to rank? 

  Jeopardy! Watson (1.0) and all the other configurations described so far rank 
answers one at a time using logistic regression. 

– Learning is instance based. 
– One instance is a single answer to a single question. 

 Should be possible for a system to do a better job ranking answers by looking at 
the answers as a group and learning to rank them instead of just scoring them one 
at a time in isolation. 

 Learning to rank is very successful in other applications 
 We tried learning to rank for Jeopardy! Watson and found it was not more effective 

than multi-phase logistic regression. 
– We’re not really scoring them one at a time in isolation: standardization and multiple 

phases are effective ways to let answers influence each other. 
– We design features and test them using logistic regression and discard the ones that are 

not effective.  Result: features are well suited to logistic regression. 
 However, the field of learning to rank has continued to progress. 
 Stay tuned!!! 
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Decision Making in Question Answering 

• Choosing answers to questions! 
•  IBM Watson generates many candidate answers 
•  For each answer, how confident are we that the answer is right? 

• Deciding whether to answer 
•  Based on how confident we are that the answer is right 
•  Based on cost/benefit of right answers and wrong answers 
 

• Deciding how many answers to provide 

• Deciding whether to hedge 
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Deciding whether to answer 

  In Jeopardy!, if you answer wrong, you lose money (hence the name). 
 Very important to not answer when you don’t know the answer. 
 A big part of what motivated us to pursue Jeopardy!: Systems that know what they 

don’t know. 
 Lots of data in Jeopardy! to optimize win rate based on outcomes. 
  Jeopardy! Watson (1.0) had extensive game playing capability for key Jeopardy! 

decisions like what category to select, how much to wager, and whether to try to 
answer a question (see upcoming slides) 

– The core Watson question answering capability is responsible for selecting an answer 
AND deciding how likely the answer is to be correct. 

– The Watson Jeopardy! playing application decides whether to answer using the 
confidence AND the game state (e.g., if Watson is way behind, it may take bigger risks). 

 Similarly in business applications, core Watson QA ranks answers and assigns 
confidence scores; each application has its own logic for what to do with it. 

– For example, applications with very casual users may want to avoid wasting the users 
time with answers with a low probability of correctness 

–  In contrast, applications used by highly motivated users may be more aggressive. 
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Stochastic Process Model of Jeopardy! Clues 

Initial buzz 

79.7% 

8.6% 

right 

No buzz 

wrong 
Rebound 1 

5.9% 

4.1% 

right 

No buzz 

wrong Rebound 2 

0.4% 

1.1% 

right 

No buzz 

wrong 0.2% 

(Tesauro et al., 2012) 

 For Jeopardy! we had lots of data about human opponents behavior. 
 This plus our own confidence in our own answer allows us to precisely model 

expected outcomes of answering or not answering. 
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 We could do something similar in many business applications, e.g.: 

Stochastic Process Model in Business Applications? 

4% 
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  (customer is most likely to buy the product if Watson answers correctly but more 
likely to buy if Watson doesn’t answer than it if it answers wrong) 

 However, typically you don’t really have data like that. 
 Core Watson just provides answers + confidence, applications must decide. 
 Mostly just have a pre-defined confidence threshold (subjective user experience). 
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Decision Making in Question Answering 

• Choosing answers to questions! 
•  IBM Watson generates many candidate answers 
•  For each answer, how confident are we that the answer is right? 

• Deciding whether to answer 
•  Based on how confident we are that the answer is right 
•  Based on cost/benefit of right answers and wrong answers 
 

• Deciding how many answers to provide 

• Deciding whether to hedge 
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Deciding how many answers + hedging 

  In Jeopardy!, you can give only one answer. 
 However, in real life you can show multiple answers to a user. 
 Generally not as good as just providing the one correct answer 
 However, sometimes IBM Watson has several answers that all have reasonably 

good scores and no one answer with a very good score. 
 Show one answer when you are very confident of one answer, and show multiple 

answers you have several that all have similar confidences? 

 A system can hedge an answer, by saying something like: “I don’t really know, but 
I think the answer might be…” before answering. 

  It would do this for medium confidence answers: high enough to be worth showing 
a user but not high enough to  

 Users may be more forgiving of wrong answers if they are hedged. 

 Like deciding whether to answer, these are addressed at the application level. 
The core IBM Watson QA system provides many ranked answers with 
confidences, and the application decides what to do with that information. 
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