
Category Theory for Modular Design:

An IoT Example

Spencer Breiner & Eswaran Subrahmanian

National Institute of Standards and Technology

Ontolog 2015 - March 12

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 1 / 23



1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 2 / 23



Category Theory

Developed in the 1940’s to connect different branches of mathematics.

Reveals deep connections between formal logic, computer science and

theoretical physics.

Mathematical study of (implementation-independent) structure.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 3 / 23



What is a category?

Directed graph + path equivalence

an employee

works in

44

is managed by

��

a department

has a manager

tt
has a secretaryoo

“Every employee is managed by the manager of his department.”

an employee
is managed by //

works in ((

an employee

a department

has a manager

66

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 4 / 23



What is a category?

Directed graph + path equivalence

an employee

works in

44

is managed by

��

a department

has a manager

tt
has a secretaryoo

“Every manager works in the same department she manages.”

a department
has a manager //

do nothing ((

a department

an employee

works in

66

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 4 / 23



What is a category?

Directed graph + path equivalence

an employee

works in

44

is managed by

��

a department

has a manager

tt
has a secretaryoo

Intuitively, each box is a set,

each arrow is a function.

each path is a composition of functions,

each equivalence is an equation between composites.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 4 / 23



Plan

1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 5 / 23



A high-level interface

a model • an evol. eqn.

•

00generate

a house

has

OO

has //

has ��

a state oo
predict

a sensor network
•

initial values
--

generate

This is a formal specification of an interface.

Fill in the details piece by piece, then integrate.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 6 / 23



A simple house model

Outside Liv. Rm. (AC)

Kitchen (oven) Bedroom (Heater)

Bath

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 7 / 23



A simple house model

Model schema Instance

a passage

��

connects

��
a room

a source/sink

is installed in

OO

{
Door1,Door2,...,

Window1,Window2,...

}

��
connects

��{
Kitchen,Bedroom,Bath,

LivingRoom,Outside

}

{
AC1,AC2,Heat1,

Heat2,Oven,Fridge

}is installed in

OO

Categorical models automatically provide database schemas.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 8 / 23



Plan

1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 9 / 23



Model + State 7→ Evolution Equation

Model State

P

t
��

s
��

R

S

u

OO

a state

has source output

��

has heat transfer

��
Output ∈ RS α ∈ RP

Temp(ri, k + 1) = Temp(ri, k) +
∑

u(s)=ri

Output(s)

+
∑

t(p)=ri

αp

(
Temp(s(p), k)− Temp(ri, k)

)

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 10 / 23



Modelling the evolution equation

Temp(ri, k + 1) = Temp(ri, k) +
∑

u(s)=ri

Output(s)

+
∑

t(p)=ri

αp

(
Temp(s(p), k)− Temp(ri, k)

)

R

Temp(−,k+1)

++// R1 × R2 × R3 ∑ // R

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 11 / 23



Modelling the evolution equation

R

Temp(−,k+1)

++// R1 × R2 × R3 ∑ // R Break down sum.

R1

R

Temp(−,k) .. Boundary value.

Curry, then sum.

BVs, algebra,

curry, sum.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 11 / 23



Modelling the evolution equation

R

Temp(−,k+1)

++// R1 × R2 × R3 ∑ // R Break down sum.

R1

R

Temp(−,k) ..

curryu(Output) //
∏

u(s)=r

R
∑

// R2

Boundary value.

Curry, then sum.

BVs, algebra,

curry, sum.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 11 / 23



Modelling the evolution equation

R

Temp(−,k+1)

++// R1 × R2 × R3 ∑ // R Break down sum.

R1

R

Temp(−,k) ..

curryu(Output) //

curryt

(
αp(Temp(t,k)−Temp(s,k))

) //

∏
u(s)=r

R
∑

// R2

∏
t(p)=r

R
∑

// R3

Boundary value.

Curry, then sum.

BVs, algebra,

curry, sum.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 11 / 23



Plan

1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 12 / 23



Semantic categories

Categories via composition:

A category consists of objects (A,B, . . .) and arrows (f : A→ B).

Arrows which match “tip-to-tail” can be composed:

A

f ��

g◦f // C

B

g

>>

Example: Set has sets for objects and functions for arrows.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 13 / 23



Maps between categories

A functor is a map between categories. This are just like maps between

graphs, with one important difference:

Nodes map to nodes, edges map to paths of edges.

In the previous example,

state × model

��

� // (RP × RS)× (R× S × . . .)

��
(R× R× R)R

∑R

��
evo. eqn � // RR

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 14 / 23



Semantic Interpretation

The semantics for categorical models generalize the set-theoretic

semantics of first-order logic.

A “theory” is a (small) syntactic category Syn.

Semantics “occur” in the category Set.

A “model” or interpretation of the theory is a functor

Syn
I // Set .

The same set-up applies to more exotic semantics.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 15 / 23



Semantic Interpretation

The semantics for categorical models generalize the set-theoretic

semantics of first-order logic.

A “theory” is a (small) syntactic category Syn.

Semantics “occur” in some (large) category Smtc.

A “model” or interpretation of the theory is a functor

Syn
I // Smtc .

The same set-up applies to more exotic semantics.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 15 / 23



Sensors + State 7→ Initial Values

a state
has sensor locations // loc ∈ RQ

a sensor network
has sensor values // read ∈ RQ

From this data we must produce an initial value map Temp : R→ R.

But what is a map?

Situation: Thermostat in every room.

Semantics: Syn // Set .

Map: Temp : R

loc−1

&&
Q

loc

gg
read // R .

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 16 / 23



Sensors + State 7→ Initial Values

a state
has sensor locations // loc ∈ RQ

a sensor network
has sensor values // read ∈ RQ

From this data we must produce an initial value map Temp : R→ R.

But what is a map?

Situation: Readings over time.

Semantics: Syn // SetT .

Map: Temp : R× T // R .

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 16 / 23



Sensors + State 7→ Initial Values

a state
has sensor locations // loc ∈ RQ

a sensor network
has sensor values // read ∈ RQ

From this data we must produce an initial value map Temp : R→ R.

But what is a map?

Situation: Many sensors, or few.

Semantics: Syn // PrLang .

Map: Temp(r) = if has sensors(r) :

return avg(read(sensors(r))

else : return avg(read(all sensors))

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 16 / 23



Sensors + State 7→ Initial Values

a state
has sensor locations // loc ∈ RQ

a sensor network
has sensor values // read ∈ RQ

From this data we must produce an initial value map Temp : R→ R.

But what is a map?

Situation: Unreliable sensors.

Semantics: Syn // Prob .

Map: Temp : R // ProbDist(R) .

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 16 / 23



Plan

1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 17 / 23



Integration via Pushouts

Formal tools called colimits allow us to automatically integrate high-level

and low-level models.

1) Begin with two (or more) models.

M1 M2

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 18 / 23



Integration via Pushouts

Formal tools called colimits allow us to automatically integrate high-level

and low-level models.

1) Begin with two (or more) models.

M1 M2

O

2) Identify the overlap between these.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 18 / 23



Integration via Pushouts

Formal tools called colimits allow us to automatically integrate high-level

and low-level models.

1) Begin with two (or more) models.

M1 M2

O

CC[[

2) Identify the overlap between these.

3) Map the overlap into each piece.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 18 / 23



Integration via Pushouts

Formal tools called colimits allow us to automatically integrate high-level

and low-level models.

1) Begin with two (or more) models. Smtc

M1

AA

M2

]]

O

CC[[

2) Identify the overlap between these.

3) Map the overlap into each piece.

4) Aggregates are defined semantically.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 18 / 23



Integration via Pushouts

Formal tools called colimits allow us to automatically integrate high-level

and low-level models.

1) Begin with two (or more) models. Smtc

M1 +
O
M2

OO

M1

CC

M2

[[

O

CC[[

2) Identify the overlap between these.

3) Map the overlap into each piece.

4) Aggregates are defined semantically.

5) Push out.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 18 / 23



Iterating Pushouts

Theorems on colimits guarantee correctness for iterated constructions:

P∗

P1

88

P2

ff

EvoMod

88

Interface

88ff

IVMod

ff

{model× state→ evo eq}

88ff

{sensors× state→ IV}

88ff

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 19 / 23



Plan

1 Introduction

2 Conceptual models

3 Filling in details

4 Semantics

5 Model Integration

6 Conclusion

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 20 / 23



(Some) Advantages of CT

Extensibility.

Modularity.

Close connections with formal logic and programming languages.

Automatic database integration.

Rich semantics.

Tools for studying semantic relationships (natural transformations).

Tools for studying “the same” data in different contexts (adjoints).

Tools for modelling effects in a functional context (monads).

Automatic methods for data migration (Kan extension).

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 21 / 23



(Some) Advantages of CT

Extensibility.

Modularity.

Close connections with formal logic and programming languages.

Automatic database integration.

Rich semantics.

Tools for studying semantic relationships (natural transformations).

Tools for studying “the same” data in different contexts (adjoints).

Tools for modelling effects in a functional context (monads).

Automatic methods for data migration (Kan extension).

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 21 / 23



Ready for Primetime?

The mathematics is solid; the software is not (yet).

Haskell - A functional programming language using monads.

FQL - A query language and IDE for building categorical databases.

OPL - A graphical programming language based on operads.

DOL - Distributed Ontology Language based on institutions.

No general purpose environments for implementing and analysing

categorical models.

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 22 / 23



Reaching Critical Mass

New developments:

Ologs - A human-readable graphical specification for categories.

Spivak - Category Theory for the Sciences

Want to learn more, or help?

Email: sub@cmu.edu

spencer.breiner@nist.gov

Web: Categorical data project

Breiner & Subrahmanian (NIST) CT: An IoT Example 3/12/2015 23 / 23

mailto:sub@cmu.edu
mailto:spencer.breiner@nist.gov
http://categoricaldata.net/

	Introduction
	Conceptual models
	Filling in details
	Semantics
	Model Integration
	Conclusion

