Ontology Summit 2014 Big Data and Semantic Web Meet Applied Ontology Track A-Semantic Content Reuse: Synthesis

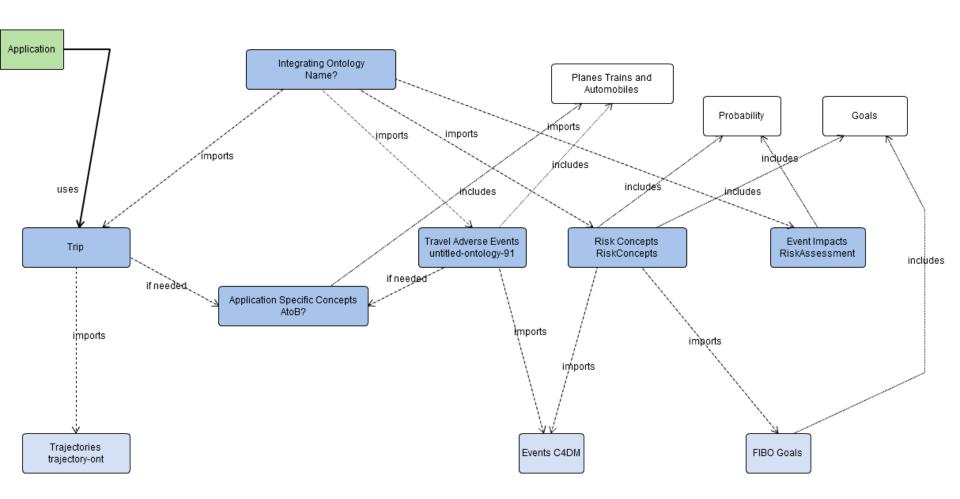
MikeBennett, GaryBergCross, AndreaWesterinen April 3, 2014

Introduction, Mission and Scope of Track A

- Semantic technologies such as ontologies and related reasoning play a major role in the Semantic Web and are increasingly being applied to help process and understand information expressed in digital formats.
- The mission of Track A is to leverage common semantic content to reduce the burden of new, quality ontology creation while avoiding silos of different ontologies.
- The range of semantic content reuse being used on the Web and Big Data is broad.
 - Content includes whole or partial ontologies, ontology modules, ontological patterns and archetypes, and common, conceptual theories related to ontologies.
 - The role and relation of methods, bottlenecks and tools was discussed.

Approach

- Enlisted 6 speakers and the community to discuss reuse issues and problems, and present their efforts and experiences to address these
- Referenced and integrated aspects of past Ontology Summits (for example, the Ontology Repositories discussions)
- Promoted discussion of track session topics on the Ontolog/Summit forum both before and after sessions
- Participated in Hackathons related to reuse and tools
- Distilled the virtual meeting topics to a useful summary and set of speakers for the face-to-face Symposium


Our 8 Speakers & Their Talks

- 1. Mike Bennett- Overview of the track
- 2. Gary Berg-Cross Overview of Reuse and Issues
- John Sowa "Historical Perspectives: On Problems of Knowledge Sharing"
- 4. Pascal Hitzler (Wright State U) "Towards ontology patterns for ocean science repository integration"
- 5. <u>Andrea Westerinen</u> "Reuse of Content from ISO 15926 and FIBO"
- 6. Ms. Megan Katsumi & Michael Gruninger "Reasoning about Events on the Semantic Web"
- 7. <u>Michel Dumontier</u> "Tactical Formalization of Linked Open Data"
- 8. <u>Kingsley Idehen</u> "Ontology Driven Data Integration & Big Linked Open Data"

ODPs and Integration Hackathon

- Aim: Explore re-use of diverse ontologies
- Context: Selected risk as a use case which requires concepts across a range of subjects
- Hackathon: Chose travel risk as a specific area to develop
- Ontologies
 - 1 created from analysis of available data sources
 - 2 created by extension or extraction from existing ontologies
 - 1 ontology with additional risk assessment concepts
- Agreed on common ontology pattern for risk and applied this to the ontologies
- Used Visual Ontology Modeler tool to visualise and compare ontologies

ODPs and Integration Hackathon Architecture

VOCREF Hackathon

- VOCREF: Vocabulary and Ontology Characteristics Related to Evaluation of Fitness.
- Highlights:
 - Use of GitHub (https://github.com/vocref/vocref) to store and allow collaboration on the ontologies, and hold current issues
 - Work will continue to address the issues and add content
 - Use of OWL Functional Syntax for serialization (to ease merging issues)
 - Defined modularity with a top-level framework ontology, and smaller ontologies that subclass from it to capture:
 - Ontology characteristics and other metadata
 - Mappings to existing ontologies

Reuse Issues

- Reuse issues are not unique to ontologies/schemas.
 - There are parallels and differences with software reuse.
- For successful reuse of semantic content ... it is important to understand how content is being used, what methods to coordinate reuse are available, and what tools are helpful.
- Tooling for modularity, documentation, etc. is critical.
 - Broader use by mainstream efforts including Big Data is bottlenecked by the paucity of semantic tools integrated into mainstream tools, along with the inherent learning curve of understanding semantics.
- In practice, reuse is dependent on both the availability of well-documented content AND tooling that supports finding and incorporating this range of content.

Conditions for Reuse

- Two of the most critical aspects are that the content is "understood" (documented) and in a form conducive to reuse (or convertible to such a form).
 - 1. Documentation must include the basic details of the semantics, but also the range of conditions, contexts and intended purposes for which the content was developed.
 - 2. It was recommended that standard metadata for reuse be defined and complete exemplars provided.
- Specific items for consideration (capture and retrieval)
 - Content is accessible and can be found
 - The re-user is motivated to find the content
 - The content is in a form conducive to re-use or can be converted/transformed to a usable form.
 - The re-user knows how to do the conversion/transformation
 - The content is logically consistent with the micro-theories of the re-user and this can be established
 - The re-user trusts the content and its quality, and believes that this quality will be maintained
 - When it is best to reuse content within the lifecycle it can be confusing as a starting point
 - Original ontology creators may have had different range of applications in mind for a given class or property (especially if developed for an application rather than standard)

Tooling (I)

- Ontology repositories with good search capabilities and governance help with the task of finding relevant content
 - Including both topical ontologies and linked data schemes
 - One possible repository is the Open Ontology Repository
- Another resource from the LOD world is the Linked Open Vocabulary (LOV)
 - In an increasingly linked data world, vocabularies rely more and more on each other through reusing, refining or extending, stating equivalences, and declaring metadata
 - LOV provides a service to find relevant vocabularies

Tooling (II)

- What is needed to support the development of modular ontologies and schemas?
 - Is this different than the tooling to query/find/reuse the modules?
 - It may be, but the tools should "play well together" to support a complete life cycle.
 - Tools for modular design / architecture of ontologies a big gap!
- Controlled natural language tools (to generate candidate ontologies) may ease the KA bottleneck.
 - Again, these should be integrated with development and query tools.
 - These should also be integrated with standard IT tools.

Best Practices (I)

- Small, more modular ontologies and schemes
 - More possibilities for reuse due to greater focus and cohesiveness, and likely less dependency on the original context
 - Modularity viewed from the perspective of the user, not the creator
- Collect and document approaches to modularization, best practices and specific patterns
- Dimensions of variability should be understood and addressed to improve modularity
 - Variability across the contexts (for example, a certain concept or property may be present or absent in different contexts and uses)
 - Variability over time

Best Practices (II)

- "Integrating" modules defined for an application or domain
 - Employing owl:equivalentClass and OWL axioms to map between the concepts, properties, etc. of the complete set of modular ontologies that address an application/domain
- Each module and its concepts, properties, axioms, ... welldocumented via well-established labels and predicates
 - SKOS, etc.
- Patterns of concepts separated from patterns of usage, analysis, traversal and diagnosis
- Multiple domains represented such that the ontologies and schemes represent "common needs"
 - No single domain focus
- Plans for variability and change documented with the modules
- Constraints or axioms distinguished as:
 - Definitive ("defining" the concepts that are necessary in the core module)
 - Pragmatic (related to the business uses or a particular domain)

Best Practices (III)

- Separate reuse of classes/concepts, from properties, from individuals and from axioms
 - Easier to target what is possible to reuse and reduces the amount of transformation and cleaning that is necessary
- Define and discuss concept naming
 - Names can be surrogate or human-readable identifiers, both approaches have their advocates, and pros and cons
 - Labels as documentation (such as from SKOS) are valuable regardless of the identifier scheme that is chosen

Ontology Management for Reuse

- Ontologies must include consistent, supporting metadata for query
 - Possible metadata includes context, use cases, labels, governance information, etc.
 - Building on the Ontology Metadata Vocabulary and concepts (or ontologies) from the Hackathons
- Reuse enhanced by feedback and user input
 - Possibly include both a recommendation system and feedback mechanisms in the repository
- Governance needs a process and its enforcement
 - Process should include open consideration, comment, revision and acceptance