

Information Workbench

Linked Data and Semantic Technologies in the Enterprise

Semantics- & Linked Data-based integration of private and public data sources based on data providers

- Generic and specific providers for various data formats and sources
- Supports established mapping frameworks (e.g. R2RML, SILK, ...)
- Named graphs for managing contexts and provenance

Intelligent Data Access and Analytics

- Flexible self-service UI
- Visualization, exploration, dashboarding and reporting
- Semantic search

Collaboration and actionable data

- Curation & authoring
- Trigger actions and invoke services
- Collaborative and data-driven workflows

Open standards and technologies

- Semantic Wiki based frontend (Using SMW Syntax)
- Supporting W3C standards (OWL, RDF, SPARQL,, ...)
- Community Edition (Open Source) + Enterprise Edition (Commercial)

fluidOps Platform and Solutions

Scalable End-User Access to Big Data

On demand Access to Open Data

Dynamic Semantic **Publishing**

Protein Engineering Portal

SIEMENS

Optique

OpenCube

Partner Products &

SDK

Configuration

Data

Platform

Flexible & Data-driven UI

Semantic Data Management

Resources

Example: eCloudManager Solution

Enterprise Cloud Ontology

http://fluidops.com/ontologies/ecloud

Widget-based User Interface

- Declarative specification of the UI based on available pool of widgets and simple wiki-based syntax
- Widgets have direct access to the database
- Embedding of dynamic data, visualizations, forms, etc.
- Ontology-driven template mechanism

Ontology as a "Structural Backbone"

Widget-Based User Interface

Visualization and Exploration

Mashups with Social Media

Analytics and Reporting

Authoring and Content Creation

Widgets are not static and can be integrated into the UI using a Wiki-style syntax.

Example: Add Widgets to Wiki

```
{{#widget: BarChart |
query ='SELECT distinct (COUNT(?Release) AS ?COUNT) ?label WHERE {
    ?? foaf:made ?Release .
    ?Release rdf:type mo:Release .
    ?Release dc:title ?label .
}
GROUP BY ?label
ORDER BY DESC(?COUNT)
LIMIT 10
'
| input = 'label'
| output = 'COUNT'
}}
```


Example (continued)

Page of a class instance:

 Displays the data about the resource according to the class template

Ontology-Based Data Input

Triple Editor takes into account the ontology definition:

Autosuggestion tool considers the domains and ranges of the properties

Ontology Repository and Ontology Editor

Ontology Repository and Ontology Editor

Ontology Based Data Access

Up to 80% of expert's time spent on data access

Optique solution

Visual Query Formulation

- Find: fields together with their remaining oil
 - that are currently operated by Statoil, and
 - show the types of wellbores located on this fields

How Do We Develop Ontologies?

- 1) Manual engineering inside fluidOps
- Significant expertise in house (several PhDs in semantic technologies)
- Hard to train newbies, regular software engineers, let alone "end users"
- 2) Reuse of existing ontologies
- Good ontologies are highly valuable assets, typically "for free"
- Building blocks for reusable solutions
- Interoperability with existing data
- 3) Development by partners and customers
- Typically as extensions to our base ontologies
- To extend the platform for additional use cases
- 4) Ontologies already in place
- Defined / selected by the customer

"Pragmatic" Ontology Engineering

Very incremental, iterative approach

- Often data first, schema last
- Typically: simple class hierarchies, properties with domain/range restrictions
- Agile development: Intertwined ontology and application development
- Immediate effect of enriching / extending the ontology

Methodology

- Rather informal, elements of NeOn methodology
- Naming patterns (namespaces, URIs, naming schemes)
- Type hierarchies
- Basic design patterns (e.g. N-ary)

Tooling

- Everything from plain text editor to Protégé
- Simple built-in ontology editing in the Information Workbench

Difficulties in Reuse

Hard to motivate people to reuse

- Tradeoff between specificity for the immediate problem at hand vs. reuse and interoperability
- Software engineers tend to have preference for "their own" solutions
- Also related to initial barrier of understanding an "alien" ontology

What is a good ontology to reuse?

- Reuse per se is not a benefit
- Hard to assess quality, relevance/adoption by a non expert
- Repositories such as Linked Open Vocabularies are a good step
- Ranking, recommendations would be helpful

Some Examples of Ontology Reuse and Reusable Apps

- FOAF
- SKOS
- Music ontology
- CIDOC-CRM
- Semantic Web Conference Ontology
- SIOC
- Sports Ontology
- SEON (Software Evolution ONtologies)
- OSLC (Open Services for Lifecycle Collaboration)

•

Conclusions

Ontologies as structural backbone of the application

- For data integration
- As conceptual model for data access and interaction (visualization, querying, ...)
- For defining associated actions (events, triggers, actionable results)

Main advantages

- Ontologies as reusable, modular artifacts enabling reusable, modular apps
- Ease of extensions, not bound to a fixed schema defined-upfront
- Flexible application development, very simple customization to particular domains
- Try it: http://www.fluidops.com/information-workbench/

Thank you!

Contact

fluid Operations AG Altrottstr. 31 Walldorf Germany

+49 (0) 6227 358087-0 www.fluidops.com contact@fluidOps.com