Ontology Summit 2014
Big Data and Semantic Web Meet Applied Ontology

Track C: Overcoming Ontology Engineering Bottlenecks
Synthesis-|

Pascal Hitzler, Matthew West, Krzysztof Janowicz
Track Co-Champions



Mission and Scope of Track C

The mission of track C is to identify bottlenecks that hinder the large-scale
development and usage of ontologies and identify ways to overcome them.

Bottlenecks include

Ontology engineering processes that are time consuming,

Social, cultural, and motivational issues

Modeling axioms or knowledge representation language fragments that cause difficulties
in terms of an increase in reasoning complexity or reducing the reuseability of ontologies
The identification of areas and applications that would most directly benefit from ontologies
but have not yet considered their use and development.

Potential Solutions include

Tools and techniques,

Research findings and methods, guidelines, documentation, and best practice,

Automation

The combination of inductive and deductive methods to scale the creation of axioms

The development of a set of reusable patterns that can ease ontology development and
alignment

The identification of purpose-driven modeling granularities that provide sufficient semantics
without over-engineering

Lessons learned from ontologies that are seeing wide adoption

The development of tutorials and other educational materials



Report from Track C Session | (2014/02/06)

Session | title: Strategies and Building Blocks

Speakers:

Prof. Werner Kuhn (University of California, Santa Barbara)
"Abstracting behavior in ontology engineering"

Prof. Aldo Gangemi (University Paris 13 and ISTC-CNR Rome)
"Knowledge Patterns as one means to overcome ontology design
bottlenecks"

Mr. Karl Hammar (Jonkoping University)
"Reasoning Performance Indicators for Ontology Design Patterns"



Report from Track C Session | (2014/02/06)

Bottleneck focus of session I:

* Modeling axioms or knowledge representation language
fragments that cause difficulties in terms of an increase
In reasoning complexity or reducing the reuseability of
ontologies

Potential solutions focus of session I:

* The development of a set of reusable patterns that can
ease

« ontology development and alignment

* The identification of purpose-driven modeling
granularities that provide sufficient semantics without
over-engineering



Report from Track C Session | (2014/02/06)

Questions we wanted to address during session |I:

« How to arrive at reusable patterns? How many patterns are there?
Are there types of patterns? Are all patterns domain-independent?
Can we mine patterns from data?

« Who will develop and maintain these patterns? Are there measures
or at least experience reports on the robustness and usefulness of
patterns? Are there success stories of large-scale pattern usage?

« How to abstract from individual ontology designs? Do we need
higher-level ontology modeling languages on top of knowledge
representation languages? How to get community buy-in?

 How important is the selection of specific language constructs for the
scalability and reuse of patterns?



Report from Track C Session | (2014/02/06)

Important findings from the talks:

« Astandardized and accepted knowledge representation
language such as OWL does not necessarily replace the need for
a knowledge modeling language (see Kuhn's talk)

 Behavioral abstraction (e.g., duck typing) may be one approach
to support the development of more robust ontologies (Kuhn)

« Entity-centric, frame-oriented data science required to ensure
relevance of SW technologies and ontologies (Gangemi)

* Need for improved data-driven technigues to scale the
development of patterns and ontologies without loosing reference
frames (Gangemi)

« The usage of specific KR language constructs has direct
consequences for reasoning complexity, tool support (e.g.,

CGil), and reusabllity (Hammer)



Report from Track C Session | (2014/02/06)

Some important findings from the chat:

 There are an unlimited number of patterns

 We can mine patterns from data

* True patterns will mostly be discovered, rather than invented

 When you abstract patterns from ontology designs you are usually moving
up the subtype/supertype hierarchy rather than moving out class-instance,
so you should not normally need another language.

* Buyin comes from utility plus ease of availability and use.

* |tis first of all important that the language constructs can support the
requirements of the application, otherwise all is lost. Generating more
efficient language forms from more understandable forms may be a way
forward.



Report from Track C List Discussion

Some important findings from the Summit List discussion
 What s it that takes a lot of time and effort?
 Education and team buy-in takes a lot of time.
* There are 2 tasks that are rather time-consuming;
* the extraction of the knowledge from Subject-Matter experts, and
* the explanation of the model to developers using it.
* Whatis it that is very expensive?
* Refining the ontology during development to satisfy logical consistency
 The extraction of the knowledge is expensive
 Whatis it that is held up because of a lack of scarce resources?
 We need new and better ways to discover, express and process
ontologies.
 Why is it that ontological approaches are not taken when they
could/should be?
* Time constraint on the delivery of the ontological artifacts mean that
the model and its implementation are generally not separated.
* Current ontological approaches are too primitive.



