
Abstracting Behavior in
Ontology Engineering

Werner Kuhn

Center for Spatial Studies

University of California, Santa Barbara

1

throwing out of the window:

The Ontology Engineering Bottleneck

context	

pragmatics	

structure	

processes	

prototypes	

similarity

meaningful communication	

concepts	

words	

predicates	

sortals	

sets	

⊓⊔⊑

2

Acknowledgments to Ross Purves	

schema.org

3

http://vocamp.org/wiki/GeoVoCampSB2012

The Promise of ODP

Design patterns support ontology engineering by	

!
• ... increasing modularity and reusability	

• ... providing building blocks for ontology design!
• ... capturing semantics that may get lost in ontologies.

How should we 	

identify, specify, and 	

evaluate ODP ?	

4

Requirements

Theories and tools to develop ODP should be	

!
• ... generic (independent of domains and of ontology languages)	

• ... expressive (more than ontology languages or visual languages)	

• ... supporting composition	

• ... theoretically sound	

• ... easy to use (as easy as possible)	

• …?	

5

An old idea: abstracting behavior
Grouping concepts by shared behavior avoids some of these
losses and modeling errors. 	

!

“If it looks like a duck, swims like a duck, and quacks like a duck,  
then it probably is a duck.”

http://commons.wikimedia.org/wiki/File:Mallard2.jpg http://upload.wikimedia.org/wikipedia/commons/a/a3/The_Spirit_of_43-Donald_Duck%2C_cropped_version.jpg

6

Ontology engineering with  
behavioral abstraction

To avoid vocabulary inflation and obesity…	

!

• ... document actual uses of vocabularies as triples	

showing who calls what a “duck”!

!
• ... treat these uses as inconsequential type declarations	

same animal or toy could be called “mallard”!
!
• ... define type classes for shared behavior as ontology patterns	

classes SWIM, QUACK, TALK,…!
!

• ... inherit behavior to types playing roles and reason about them	

duck instantiates SWIM, QUACK, but not TALK

7

The formal view:  
multi-parameter type classes  

• provide variables for concepts (type variables)	

• treat concepts as role fillers (think of frames)	

• specify them through shared behavior (think of interfaces)

class Equal a where	

equal :: a -> a -> Bool	

instance Equal Int where	

equal = primEqInt	

instance Equal Point where	

equal = coordEqPoint	

instance ...

8

A Modeling Language: Haskell

class (LINK link from to, SUPPORT from for, SUPPORT to for, CONTAINMENT medium link) 	
=> PATH for link from to medium where 	

	 move :: for -> link -> from -> to -> medium -> for	
!
instance PATH Car Link Node Node Air

The standard modern functional language	

• clean, higher order type system	

• executable algebraic specifications	

• multi-parameter type classes

9

Example:  
Path Pattern

class (LINK link from to, SUPPORT surface for,  
 CONTAINMENT medium link) =>	

PATH for link from to surface medium where 	

move :: for -> link -> from -> to -> surface -> medium -> for	

!

instance PATH Car Highway Exit Exit Lane Air where	

*move car{@exit1} highway exit1 exit2 lane air 	

= car{@exit2}	

!

class LINK link from to where	

links :: link -> from -> to -> Bool
10

Conclusions

1. Ontologies in the semantic web emphasize set-based (and often
highly context-dependent) typing	

2. There is no good theory or practice to model higher level
structure in ODP	

3. I propose to design ODP around shared behavior, using type
classes	

4. The resulting ODP provide small theories, easily combinable, for
big data	

5. Specifications can be found, for example, in the GeoVoCamp
series, but the idea is not limited to “geo” or spatial.

11

But, will this solve the  
fax-number-of-mountains  

problem?

Yes! mountains are  
endObjects of PATHs for hiking (not faxing)

Thank You!
12

Some References and Pointers
!
• Kuhn, W. (2010). Modeling vs encoding for the Semantic Web.  

Semantic Web - Interoperability, Usability, Applicability, 1(1), 11–15	

• http://www.haskell.org/haskellwiki/Haskell 	

• SWISH http://www.ninebynine.org/RDFNotes/Swish/Intro.html	

• GeoVoCamps http://vocamp.org/wiki/GeoVoCampSB2014 	

13

http://ifgi.uni-muenster.de/~kuhn/research/publications/pdfs/refereed%20journals/SW%202010.pdf
http://www.haskell.org/haskellwiki/Haskell
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://vocamp.org/wiki/GeoVoCampSB2014

