Towards ontology patterns for ocean science repository integration

Pascal Hitzler
DaSe Lab for Data Semantics
Wright State University
http://www.pascal-hitzler.de
Collaborators

Robert Arko, Columbia University
Cynthia Chandler, Woods Hole Oceanographic Institution
Michelle Cheatham, Wright State University
Timothy Finin, University of Maryland, Baltimore County
Pascal Hitzler, Wright State University
Krzysztof Janowicz, University of California, Santa Barbara
Adila Krisnadhi, Wright State University
Thomas Narock, Marymount University
Lisa Raymond, Woods Hole Oceanographic Institution
Adam Shepherd, Woods Hole Oceanographic Institution
Peter Wiebe, Woods Hole Oceanographic Institution

The presented work is part of the NSF OceanLink project:
EarthCube Building Blocks, Leveraging Semantics and Linked Data for Geoscience Data Sharing and Discovery
OceanLink and EarthCube

EarthCube:
Developing a Community-Driven Data and Knowledge Environment for the Geosciences

“concepts and approaches to create integrated data management infrastructures across the Geosciences.”

“EarthCube aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system.”
OceanLink

Bottom-up constructed project.

Currently first phase:

- Integrating ocean science repositories BCO-DMO and R2R, as well as datasets from the WHOI Library, AGU abstracts, NSF projects.

- Demonstrable added value (faceted integrated search).

- Key: extensible architecture that has the potential to grow to EarthCube size
Logic

Many axioms / strong theory

Few models
Many inferences

Few axioms / weak theory

Many models
Few inferences
Ontologies

Strong / many ontological commitments

Few models
Many inferences
Not very reusable

Weak / few ontological commitments

Many models
Few inferences
More easily reusable
Ontology Design Patterns

- Strong / many ontological commitments
 - Few models
 - Many inferences
 - Not very reusable

- Weak / few ontological commitments
 - Many models
 - Few inferences
 - More easily reusable
“An ontology design pattern is a reusable successful solution to a recurrent modeling problem.”

So-called content patterns usually encode specific abstract notions, such as process, event, agent, etc.
E.g., “Event”

Event \sqsubseteq \text{occursAtTime} . \text{xsd:dateTime}

Event \sqsubseteq \text{occursAtPlace} . \text{xsd:string}
Better Event (more general)

But what about events taking place in Second Life?
Perhaps even ...

Event

<TemporalThing>

<Place>

<Agent>

occursAtTime

occursAtPlace

hasParticipant
There are several things wrong here!
Shortcuts / views

\[
a:occursAtPlace \circ a:hasName \equiv b:occursAtPlace
\]

Better, but …
Shortcuts / views

\[
\begin{align*}
&\text{Event} \quad \text{xsd:string} \\
\text{a:occursAtPlace} & \land \text{a:hasName} \sqsubseteq \text{b:occursAtPlace} \\
\text{a:occursAtPlace} \land \text{a:hasName} & \sqsubseteq \text{b:occursAtPlace} \\
The \text{latter is not in OWL!}
\end{align*}
\]
The latter is not in OWL!
Similar problem

Splitting a role:

hasParent

hasFather

hasMother

hasFather \sqsubseteq \textit{hasParent}

hasMother \sqsubseteq \textit{hasParent}

\textit{hasParent} \sqsubseteq \textit{hasFather} \sqcup \textit{hasMother}
Cruise

For us: ocean science cruise.

A cruise is a type of event.

But what kind of place does it occur at?
Cruise

A trajectory!
Semantic Trajectories

[Hu, Janowicz, Carral, Scheider, Kuhn, Berg-Cross, Hitzler, Dean, COSIT2013]
Semantic Trajectories
Semantics in OWL

\[\text{Fix} \sqsubseteq \exists \text{atTime.OWL-Time:Temporal Thing} \cap \exists \text{hasLocation.Position} \]
\[\cap \exists \text{hasFix SemanticTrajectory} \]

\[\text{Segment} \sqsubseteq \exists \text{startsFrom.Fix} \cap \exists \text{endsAt.Fix} \]
\[\top \sqsubseteq 1 \text{startsFrom.} \top \]
\[\top \sqsubseteq 1 \text{endsAt.} \top \]

\[\text{Segment} \sqsubseteq \exists \text{hasSegment SemanticTrajectory} \]

\[\text{startsFrom} \circ \text{endsAt} \sqsubseteq \text{hasNext} \]
\[\text{hasNext} \sqsubseteq \text{hasSuccessor} \]
\[\text{hasSuccessor} \circ \text{hasSuccessor} \sqsubseteq \text{hasSuccessor} \]
\[\text{hasNext} \sqsubseteq \text{hasPrevious} \]
\[\text{hasSuccessor} \sqsubseteq \text{hasPredecesor} \]
Semantics in OWL

\[
\begin{align*}
Fix \sqcap \neg \exists \text{endsAt.Sequential} & \sqsubseteq \text{StartingFix} \\
Fix \sqcap \neg \exists \text{startsFrom.Sequential} & \sqsubseteq \text{EndingFix} \\
\text{Segment} \sqcap \exists \text{startsFrom.Sequential.}\text{StartingFix} & \sqsubseteq \text{StartingSegment} \\
\text{Segment} \sqcap \exists \text{endsAt.Sequential.}\text{EndingFix} & \sqsubseteq \text{EndingSegment} \\
\text{SemanticTrajectory} & \sqsubseteq \exists \text{hasSegment.Sequential.} \\
\text{hasSegment} \circ \text{startsFrom.Sequential} & \sqsubseteq \text{hasFix} \\
\text{hasSegment} \circ \text{endsAt.Sequential} & \sqsubseteq \text{hasFix} \\
\exists \text{hasSegment.Sequential} & \sqsubseteq \text{SemanticTrajectory} \\
\exists \text{hasSegment}^\neg \text{.SemanticTrajectory} & \sqsubseteq \text{Segment} \\
\exists \text{hasFix.Sequential} & \sqsubseteq \text{SemanticTrajectory} \\
\exists \text{hasFix}^\neg \text{.SemanticTrajectory} & \sqsubseteq \text{Fix}
\end{align*}
\]
Ocean Science Cruise (draft)
Cruise trajectory (draft)
\[
\text{Cruise}(x) \land \text{hasTrajectory}(x, y) \\
\land \text{hasSegment}(y, z) \land \text{isTraversedBy}(z, v) \\
\rightarrow \text{participatesIn}(v, z)
\]
Cruise trajectory

\[\text{Cruise}(x) \land \text{hasTrajectory}(x, y) \]
\[\land \text{hasSegment}(y, z) \land \text{isTraversedBy}(z, v) \]
\[\rightarrow \text{participatesIn}(v, z) \]

\[\text{Cruise} \equiv \exists \text{cruise.Self} \]
\[\text{cruise} \circ \text{hasTrajectory} \circ \text{hasSegment} \circ \text{isTraversedBy} \]
\[\sqsubseteq \text{hasParticipant} \]
\[\text{hasParticipant} \equiv \text{participatesIn}^\text{−} \]
\[
\text{Fix}(x) \land \text{hasAttribute}(x, \#\text{portStopArrival}) \\
\land \text{atPort}(x, y) \land \text{hasSpatialFootprint}(y, z) \\
\land \text{hasLocation}(x, w) \rightarrow \text{locatedIn}(w, z)
\]
Cruise trajectory

\[\text{Fix}(x) \land \text{hasAttribute}(x, \#\text{portStopArrival}) \]
\[\land \text{atPort}(x, y) \land \text{hasSpatialFootprint}(y, z) \]
\[\land \text{hasLocation}(x, w) \rightarrow \text{locatedIn}(w, z) \]

\[\text{Fix} \land \exists \text{hasTrajectory}.\{\#\text{portStopArrival}\} \equiv \exists \text{fixps}.\text{Self} \]
\[\text{hasLocation}^\rightarrow \circ \text{fixps} \circ \text{atPort} \circ \text{hasSpatialFootprint} \subseteq \text{locatedIn} \]
Traditionally, ODPs are thought of as building blocks for ontology modeling.

This idea is certainly valid in the context of special purpose ontology-based systems.

However, it can be argued that ODPs can be much more than mere building blocks.
Horizontal alignment via patterns
OceanLink setup

User Interface

UI Views

OceanLink Patterns

- R2R
- BCO-DMO
- WHOI Library
- AGU
- NSF

mappings
Other added values of patterns

- Pattern-driven GUIs
- Pattern-driven mapping tools
- Pattern-driven query rewriting
- Pattern-driven reasoning modularization
- …
OceanLink setup

User Interface

UI Views

EarthCube Patterns

repository
repository
repository
repository
repository
mappings
Thanks!
References

• R2R: Rolling Deck to Repository, http://www.rvdata.us
• OceanLink website and publications are forthcoming
• http://ontologydesignpatterns.org
General References

General References

General References
