Ontology for Ontology Evaluation

@Participants:

Today (March 31, 2013) - fleshing out the diagrams and formalizing the ontology.
Audio will be available on the “joinconference” line, as per usual ontolog virtual meets
If you're looking to see if material you would like to include has already been added / is
being edited, | suggest using search (Ctrl+F) to search for the title of the talk / paper /
author and jump to the relevant section below.

Technical requirements

for use in Purple Semantic Media Wiki (PSMW), to support organization, presentation, and
reuse of OntologySummit2013 materials and content (i.e., for use by HC-04 team).

Coverage requirements
from various materials presented during the summit, especially those that identify:

evaluable characteristics of ontologies,

metrics and methods for such evaluation,

lifecycle stages

maturity models of ontologies and/or evaluation

useful faceting characteristics of ontology characteristics

characterizing ontology internally,

characterizing ontology externally,

characterizing relation of ontology specifics to particular use or application context
context dependence of relevance of characteristic to quality/suitability
context independence of relevance of characteristic to quality/suitability
automatability ...

Initial High Level Conceptual Model

An Ontology is an entity that is generally realized as a (possibly singular) set of artifacts within
an organizational context.

An Ontology should have a defined scope,

An Ontology should have a intended use

An Ontology should have stakeholders, ...

An Ontology can be evaluated according to a set of criteria (defined by specifications and
requirements?), which can be divided along a continuum with two poles: Intrinsic and
Extrinsic.

An ontology evaluation criteria is defined by specifications and requirements.

An ontology evaluation criteria may be intrinsic, extrinsic, or something between.

Each evaluation event/activity has an accompanying method.

There is a broader context which motivates the creation of the ontology

There is a broader context which motivates the team which creates an ontology.

An ontology also has a particular lifecycle, with a set of phases or stages, each of which may
have particular evaluation criteria and characteristics which may apply.

Additionally, the purpose and intended use of an ontology may imply that it has a set of
characteristics, may select a subset of evaluation criteria.
the purpose and intended use of an ontology may select a subset of evaluation criteria

Moreover, there exist a number of metrics which can be deployed, which provide visibility into
ontology characteristics.

Characteristics, specification and requirements may also be hierarchically connected within
themselves.

Should xref with: http://ontolog.cim3.net/cqi-bin/wiki.pl?

OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cqi-bin/wiki.pl?OntologySummit2011 ValueMetrics Synthesis

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ApplicationFramework_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2011_ValueMetrics_Synthesis

Compendium of Various Evaluation Criteria

Denny Vrande“ci ¢, “Ontology Evaluation” in Handbook of Ontologies

(2009)

The below is an excerpt from pages 295-296

e Accuracy [38]:

o

o

Do the axioms comply to the expertise of one or more users [17]?
Does the ontology capture and represent correctly aspects of the real world [38]?

e Adaptability [38]:

o

O

o

Does the ontology anticipate its uses?
Does it offer a conceptual foundation for a range of anticipated tasks?
Can the ontology be extended and specialized monotonically, i.e. without the
need to remove axioms?
How does the ontology react to small changes in the axioms [19]?
Does the ontology comply to procedures for
m extension, [17]? (named as extendibility by [22])
integration [17]?
adaptation [17]?
(also named expandability [19]?
also named sensitiveness by [19]?,
also named flexibility by [17])

e Clarity [22]:

O

0O O O O O ©O

O

Does the ontology communicate effectively the intended meaning of the defined
terms?

Are the definitions objective and independent of context?

Does the ontology use definitions or partial descriptions?

Are the definitions documented?

Is the ontology understandable?

(also named cognitive ergonomics, [17]

(also named transparency [17])

(also named intelligibility [38])

e Completeness [19])/competency [23]:

o

O O O O O

Is the domain of interest appropriately covered?

Are competency questions defined?

Can the ontology answer the competency questions?

Does the ontology include all relevant concepts and their lexical representations?
(also called richness [38])

(also called granularity [38])

Computational efficiency [17, 38]:

o

o

O

How easiy can reasoners process the ontology?

How successfully can reasoners process the ontology?

How fast can the usual reasoning services (satisfiability, instance classification,
querying, etc.) be applied to the ontology?

Conciseness [19]:

o

Does the ontology include irrelevant axioms with regards to the domain to be
covered (i.e. a book ontology including axioms about African lions)?

Does the ontology include redundant axioms?

Does it impose a minimal ontological commitment [22], i.e. does it specifying the
weakest theory possible and define only essential terms?

How weak are the assumptions regarding the ontology’s underlying philosophical
theory about reality [38]?

Consistency [19]/coherence [22]:

Do the axioms lead to contradictions (logical consistency)?

Are the formal and informal descriptions of the ontology consistent, i.e. does the
documentation match the specification?

Does the translation from the knowledge level to the encoding level show a
minimal encoding bias?

Are any representation choices made purely for the convenience of notation
[22]?

Are any representation choices made purely for the convenience of
implementation [22]?

(covers also meta-level integrity, i.e. following ordering principles [17] like
OntoClean (see chapter “An Overview of OntoClean”)

Organizational fitness [17]/commercial accessibility:

O

o

o O O O O O

Is the ontology easily deployed within the organization?

Do ontology-based tools within the organization put constraints upon the
ontology?

Was the proper process for creating the ontology used?

Was it certified, if required?

Does it meet legal requirements?

Is it easy to access?

Does it align to other ontologies already in use?

Is it well shared among potential stakeholders?

Obrst, Track A Intrinsic Synthesis (email by Leo Obrst)

Is the ontology free of obvious inconsistencies and errors in modeling?
Is the ontology structurally sound?

How do we gauge that the ontology is structurally sound?

Is the ontology appropriately modular?

Is the ontology designed according to sound principles of logical analysis?

Is the ontology implemented according to sound principles of logical analysis?

Is the ontology designed according to sound principles of semantic analysis?

Is the ontology implemented according to sound principles of semantic analysis?
Is the ontology designed according to sound principles of ontological analysis?

Is the ontology implemented according to sound principles of ontological analysis?
Which intrinsic aspects of ontology evaluation are of greater value to downstream
extrinsic ontology evaluation?

Structural Intrinsic Evaluation

Ontology evaluation that does not depend at all on knowledge of the domain being modeled.
In general, structural intrinsic criteria are focused only on domain-independent notions, mostly
structural, and those based on the knowledge representation language.

Draws upon mathematical and logical properties such as

graph-theoretic connectivity,

logical consistency,

model-theoretic interpretation issues,
inter-modularity mappings
inter-modularity preservations

Structural properties such as

branching factor of ontology constructs, are intrinsic structural properties
density of ontology constructs, are intrinsic structural properties

counts of ontology constructs, are intrinsic structural properties
averages of ontology constructs,are intrinsic structural properties
(meta-properties) transitivity of ontology constructs

(meta-properties) symmetry of ontology constructs,

(meta-properties) reflexivity of ontology constructs

(meta-properties) equivalence of ontology constructs

Some examples of tools and methodologies that address intrinsic ontology evaluation:

Oops! Evaluation web site at http://oeg-lia3.dia.fi.upm.es/oops/index-content.jsp and
described by MariaPovedaVillalon

OntoQA to develop metrics for any ontology based on structural properties and instance
populations, described by SamirTartir

PatrickLambrix’s debugging of Isa-a taxonomic structures, especially with mappings
between ontologies

Some examples of tools and methodologies that address domain intrinsic ontology
evaluation:

OQuaRE framework described by AstridDugqueRamos

OntoClean (Guarino and Welty)

MariaCopeland: Ontology Evolution and Regression Testing

MelissaHaendel: Ontology Ultility from a biological viewpoint

EdBarkmeyer: Issues with mapping vocabularies (especially code-lists) to ontologies.

Domain Intrinsic Evaluation

Evaluation where some understanding of the domain is needed. Domain knowledge and
better ways to represent that knowledge do come into play here, though divorced as much as
possible from application-specific domain requirements that come more explicitly from extrinsic
evaluation issues.

Domain Intrinsic Evaluation to determine that
e particular modeling constructs are in alignment with the reality it is supposed to model.
(meta-properties)rigidity of modeling constructs,
(meta-properties)identity of modeling constructs,
(meta-properties)unity of modeling constructs
Sources of suggestions to gauge the quality of the axioms of the ontology,:
o metaphysics,
o philosophical ontology,
o semantics,
o philosophy of language
e including e.g., the subclass/isa taxonomic backbone of the ontology and other structural
aspects of the ontology.

Most of the aspects of Domain Intrinsic Evaluation focus on
e ontological content methods
o better ontological analysis
o better semantic analysis,
o better meta-property analysis (such as provided by methodologies like
OntoClean, etc.)

At the extrinsic edge of domain intrinsic evaluation, the context-independent measures from
Structural Intrinsic evaluation begin to blend into the very context-dependent, application issues
of Extrinsic evaluation.

Some examples of tools and methodologies that address domain intrinsic ontology evaluation:
OQuaRE framework described by AstridDuqueRamos

OntoClean (Guarino and Welty)

MariaCopeland: Ontology Evolution and Regression Testing

MelissaHaendel: Ontology Ultility from a biological viewpoint

EdBarkmeyer: Issues with mapping vocabularies (especially code-lists) to ontologies.

Extrinsic Evaluation Aspects:

Ontology evaluation where the structure and design of the ontology is opaque to the tester,
and the evaluation is determined by the correctness of answers to various interrogations of
the model. In general, application requirements and domain requirements that are specifically
needed by particular applications are the focus of extrinsic evaluation.

Evaluation Across the Ontology Lifecycle

West - Track C Synthesis (email)

We focus in the communique on the evaluation of ontologies under the following aspects
e |s the domain represented appropriately (given the requirements of the IT system)?
e |s the ontology human-intelligible?
e Is the ontology maintainable?
e Does the query/reasoning capability and performance meet the requirements of the IT
system?

For each of the main kinds of ontology evaluation, it should highlight
e desirable characteristics of ontologies (e.g., reusability)
e measurable metrics (e.g., natural language definitions of classes and relations) linked to
the desirable characteristics of the ontology.

This communique should not strive for an exhaustive list, but should focus on the most
important characteristics. [track A, track B]

A better understanding of the relationships between requirements at different levels
A better understanding of how low level requirements support higher level requirements.
Ontology development methodologies that align with and recognize similar stages to
information systems development
e Ontology development methodologies with distinct
o conceptual stages,
o logical stages
o physical stages,
e Ontology development does not start at the physical level with the choice of an
implementation language.
A clearer understanding of the architecture of ontology development
A clearer understanding of the different aspects of architecture that are relevant
o ontological commitments
o language choices.

The development process for an ontology needs to have a number of stages, just like the data
model in a traditional information systems development process.

Similarly requirements need to be identified in levels
e the capabilities of the overall system that the ontology is a component of,
e to capabilities of the ontology itself in that overall system,
e to high level requirements of the ontology like consistency
e to detailed requirements, like conforming to naming standards.

The ontology development needs to go through stages to match the stages in data model
development in information systems.

e conceptual data model development in information systems

e logical data model development in information systems

e physical data model development in information systems.

There are architectural decisions to be made in terms of the choices of ontological commitments
the ontology needs to make and does make. There are choices of ontology language and
implementation environment. There is little evidence of this in current practice, where ontology
development seems to start with someone writing some OWL or CL.

Track D Synthesis (in email)

Track D, as “Software Environments for Evaluating Ontologies”, falls within the current
Communique outline in:

C. The State of the Art of Ontology Evaluation

(4) What tool-support is currently available to support the evaluation of the characteristics
identified in C-2 and the best practices identified in C-37?

Within this vein, some preliminary Track D concepts that may be developed for inclusion in the
Summit communique are, in no special order:

1.

The notion of tool support of quality is broader than the track’s title and should include
“guidance” as well as “evaluation” of those ontology characteristics determining

an ontology’s quality and fitness. Ontology tools and software environments may
intentionally constrain or recommend to the user proper ontology structure and content.
Tools may contribute this “evaluation” or “guidance” function at different points along the
ontology life cycle, and for a given characteristic, some tools may perform better in one
life cycle phase than in another phase where a different tool is better suited. Generally,
appreciation of the full cycle of life of an ontology is not well established within the
ontology community.

There are central aspects of ontology that may not be amenable to software control

or assessment. For example, the need for clear, complete, and consistent lexical
definitions of ontology terms is not presently subject to software consideration beyond
identifying where lexical definitions may be missing entirely. Another area of quality
difficult for software determination is the semantic fitness of an ontology to its world
domain (reality) or to its application domain. Software guidance may be available for the
fitness of candidate ontologies for import and reuse, but not so

The design, implementation, and use requirements of an ontology may affect how
quality and fitness on a particular ontology characteristic are determined, as well as
interpreted and valued. Perhaps all quality and fitness assessments by software should
be traceable to stated ontology requirements.

Significant new ontology evaluation tools are currently becoming available to users.
Carving a link between such tools and existing IT architecture and design tools (e.g.,
EA and SA) remains a future possibility in order to integrate ontology into mainstream
application software development within enterprise or more focused IT environments.
This capability could offer a definitive means of connecting ontology quality/fitness
characteristics and measures to use case and application software requirements.
Approximate lexical and structural matching of a new ontology or ontology component
to the content of a repository of known ontologies may offer an effective means of
identifying comparable ontology content for: 1) demonstrable coding patterns; 2)
confirmation of authoring approach; and 3) identification of reuse candidates.

Given sufficient results from the Ontology Quality Software Survey, the degree to which
current tool capabilities align with ontology quality priorities expressed by Tracks A-C.
Discoveries about the state of ontology evaluation stemming from the Hackathon and
Clinic experiences.

LifeCycle Summary by FabianNeuhaus (in email response)

1.
2.

Rationale: Why do you need an ontology?
Analysis 1 (Competency Questions)

10.

11.

12.

13.

14.

a. Bottom-Up: What are semantics of current data sources?
b. Top-Down: What would you like to ask?
Analysis 2
a. What are the referents, concepts: entities, relations, properties, rules?
b. What are the terms that index the referents: terminology?
Analysis 3
a. What are the resources available to harvest: vocabularies, schemas, taxonomies,
conceptual models, ontologies?
b. Are there domain standards, upper/middle ontologies to embed what we create
within?
Design 1
a. What ontology architecture do we choose?

b. How expressive is the ontology language we need?
c. What conceptualization?
d. How do we model these entities, relations, properties, rules?
e. What are the instances of these?
f. What data sources mappings can link to these? How?
g. What kinds of ontology tools do we need?
Implement 1
a. Implement the ontology server we will need: periodicity, granularity, configuration
management

b. Implement the infrastructure, services of our architecture: enhance the server
with application, SOA support
Design 2
a. Are we done with ontology development?
b. Test competency questions as queries against ontology + data: are good
answers returned quickly wrt domain experts/end users?
Analysis 4
a. Refine with domain experts, end users
Design 3
a. Refine conceptualization
Implement 2
a. Refine ontology
Deploy 1
a. Provide ontology application services
Deploy 2
a. Correct problems
Analysis 5
a. Interrogate users
b. Refine requirements
c. More resources?
Design 4
a. How can changes needed be made?
b. Refine regs

10

More about LifeCycles:

MikeDenny

... see also: the 7 ontology lifecycle phases (from MikeDenny) as used in the
OntologySummit2013 Survey of software capabilities:

Exploration Phase
Management Phase
Design Phase
Build Phase
o General Development
o Concept Development
o Relationship Development
Validation Phase
Integration & Use Phase
Maintenance Phase

Ref.

- slide#2 at http://ontolog.cim3.net/cqgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
- and the general setup of the survey form/results - e.g. http://ontolog-02.cim3.net/wiki/Tool-123

& http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey

Based on MikeDenny's OntologySummit2013_Survey, as implemented by KenBaclawski on
PSMW:

= Factors and Attributes of the various phase being surveyed include:
== Exploration Phase

Can Tool-123 find ontologies with specific domain coverage?

Can Tool-123 compare the domain coverage across ontologies?

Can Tool-123 assess or characterize the breadth of domain coverage of an ontology?

Can Tool-123 assess or characterize the depth or detail of domain coverage of an ontology?
Can Tool-123 assess or characterize the use considerations of ontology’s licensing?

Can Tool-123 assess or characterize the use considerations of ontology‘s training?

Can Tool-123 assess or characterize the use considerations of ontology’s cost?

Can Tool-123 assess or characterize the use considerations of ontology‘s updating ?

11

http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_21#nid3MTA
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/Tool-123
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/OntologySummit2013_Survey
http://ontolog-02.cim3.net/wiki/Tool-123

Can Tool-123 assess or characterize the use considerations of ontology’s software
requirements?

Can Tool-123 assess or characterize the use considerations of ontology’s security?

Can Tool-123 assess or characterize other un-mentioned use considerations of an ontology?
Can Tool-123 assess the complexity of concept definitions (necessary and sufficient properties)
and use of axioms?

Can Tool-123 identify number and ratio of concepts?

Can Tool-123 identify number and ratio of relations?

Can Tool-123 identify number and ratio of subclassing?

Can Tool-123 identify number and ratio of ontological constructs?

Can Tool-123 identify frequency of use of ontology language features in an ontology?
Can Tool-123 identify age and use statistics of an ontology and its versions?

Can Tool-123 assess the inferencing power of an ontology?

Can Tool-123 rate ontologies on their popularity or review feedback?

== Management Phase

Does Tool-123 distinguish between conceptual and operational ontologies and objectives?
Does Tool-123 generate ontology application and performance requirements?

Does Tool-123 organize and track the life cycle requirements and progression of an ontology?
Does Tool-123 organize and maintain a collection of related ontologies and ontology modules?
Does Tool-123 provide statistics on ontology versioning and use?

Does Tool-123 guide ontology development per a quality assurance methodology?

Can Tool-123 assess the reusability of a planned ontology?

== Design Phase

Does Tool-123 guide formulation of ontology requirements?
e Domain scope requirements
Domain detail requirements
Goodness of design requirements
Data requirements
Information requirements
Semantic requirements
Reasoning requirements
Interface requirements
Level of effort requirements
Does Tool-123 facilitate framing a set of competency questions exemplifying ontology
objectives?
Does Tool-123 allow one to choose a metaphysical methodology?
Does Tool-123 allow one to choose an extant top ontology for reuse?
Does Tool-123 allow one to choose an extant core ontology for reuse?
Does Tool-123 apply a style of ontological analysis to design?

12

Does Tool-123 guide design to optimize normalization, factoring, and simplicity of ontology?
Does Tool-123 guide application of open world or closed world semantics?

Does Tool-123 guide ontology design to achieve inferencing requirements?

Does Tool-123 guide ontology design to achieve scalability requirements?

Does Tool-123 enable adjustable query and inference performance?

Does Tool-123 offer design patterns based on current ontology or design context?
(a) Application patterns

(b) Ontology language patterns

(c) Methodology patterns

(d) Other patterns

Does Tool-123 integrate selected design patterns into an ontology design?

Can Tool-123 assess correctness or performance of an ontology design?

Does Tool-123 guide and facilitate modularization of ontology?

Does Tool-123 guide ontology design for visualization?

== Build Phase
=== General Development

Does Tool-123 allow one to choose an ontology language?

(a) Ontology language

(b) Formal logic language

(c) RDF support?

Does Tool-123 allow one to mix ontology languages?

Does Tool-123 allow one to generate ontology code from requirements specification?
Does Tool-123 allow one to generate selected design patterns in ontology code?
Does Tool-123 allow one to enforce selected design patterns in ontology code?

Does Tool-123 provide feedback on consistency of granularity for the domain ontology
structure?

Does Tool-123 provide feedback on consistency of regularity for the domain ontology structure?
Does Tool-123 manage lexical naming and annotation of ontology elements?

Does Tool-123 ensure proper use and coding of RDF and Web resources?

Does Tool-123 enforce proper use and coding of URIs?

Does Tool-123 produce the current terminological inferences of an ontology?

Does Tool-123 optimize query and inference performance?

Does Tool-123 detect violations of domain, referential, or semantic integrity?

Does Tool-123 detect overall coding errors or inconsistencies?

Does Tool-123 correct overall coding errors or inconsistencies?

=== Concept Development

Does Tool-123 ensure proper separation and coding of concepts and facts?
Does Tool-123 ensure kind-of nature and consistency of subclassing?

13

Does Tool-123 guide subclass versus class individual determinations?

Does Tool-123 monitor depth of subclassing consistency across a domain ontology?

Does Tool-123 generate prototypical instances (individuals) to help verify class intent
Does Tool-123 generate prototypical instances (individuals) to help verify class subsumption?
Does Tool-123 detect use of multiple inheritance?

Does Tool-123 guide use of multiple inheritance?

Does Tool-123 guide use of disjointness axioms?

Does Tool-123 guide use of necessary and sufficient properties in concept definitions?
Does Tool-123 guide use of existential quantification in class restrictions?

Does Tool-123 guide use of universal quantification in class restrictions?

Does Tool-123 guide use of existential versus universal quantification in class restrictions?
Does Tool-123 enforce proper use of conjunctions versus disjunctions?

=== Relationship Development

Does Tool-123 ensure proper use and coding of relations?

Does Tool-123 ensure proper use and coding of data types?

Does Tool-123 assess and enforce consistency and completeness of range and domain
constraints?

Does Tool-123 assess and enforce consistency and completeness of inverse relations?
Does Tool-123 ensure proper use and coding of transitive relations?

== Validation Phase

Can Tool-123 verify that ontology requirements are met?

Can Tool-123 assess query performance?

(a) Query precision and recall

(b) Query time performance

Can Tool-123 assess inference performance?

(a) Inferencing time

(b) Inferencing completeness

Does Tool-123 generate characteristic queries and tests?

Does Tool-123 accept validation test sets or inputs?

Can Tool-123 assure computability of ontology?

(a) Semantically adequate

(b) Mathematically complete

Can Tool-123 verify that two ontologies are interoperable?

Can Tool-123 validate the intended functionality of software using the ontology?
Can Tool-123 validate instance data conforming to an ontology?

Can Tool-123 assess accuracy, correctness, and completeness of ontology terminological
content?

Does Tool-123 guide or adjust ontology in accord with validation results?

== Integration & Use Phase

14

Can Tool-123 export ontology in different languages?

Can Tool-123 integrate ontology with other ontologies?

Can Tool-123 integrate ontology with other information system resources?

Can Tool-123 assess or track user experience with ontology?

Does Tool-123 enable user to modify or extend ontology to address deficiencies?
Can Tool-123 create mappings from ontologies to and from data and data sources?

== Maintenance Phase

Does Tool-123 promote reuse of ontology?

Does Tool-123 capture ontology errors during use?

Does Tool-123 profile use of ontology elements during use?
Does Tool-123 compare and map between ontologies?
Does Tool-123 track ontology changes and control versions?

-end -

DavidWhitten: “provenance (of where ideas, terms, concepts, definitions, etc come from)” may
be missing in the above - see Whitten’s chat input at [+2:31]

Lambrix

Defects in ontologies
e Syntactic defects
o eg. wrong tags or incorrect format
e Semantic defects
o eg. unsatisfiable concepts, incoherent and inconsistent ontologies
e Modeling defects
o eg. wrong or missing relations

Copeland
Reuse concepts from software engineering and quality assessment

e Testing at the functional requirements
o Unit Level
o System Level
e Testing at the non-functional requirements

e Explicit Changes

15

http://ontolog.cim3.net/file/work/OntologySummit2013/2013-03-07_OntologySummit2013_OntologyEvaluation-IntrinsicAspects-2/OntologySummit2013_debugging_is-a_structure--PatrickLambrix_20130307.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-03-07_OntologySummit2013_OntologyEvaluation-IntrinsicAspects-2/OntologySummit2013_ontology-regression-testing--MariaCopeland_20130307.pdf

o Asserted logical and annotation axioms
o Properties
o Classes
e Implicit Changes?
o Subsumption changes
o Entailment changes

What are Ontology Dynamics?
e Periods of growth, decline, and stability
e Axioms presence
e Types of axioms presence (e.g. continual, interrupted)
e Sequence editing types and patterns

Tartir - OntoQA
(from: Samir Tartir, |. Budak Arpinar, Michael Moore, Amit P. Sheth, Boanerges Aleman-
meza “OntoQA: Metric-based ontology guality analysis” (2005))

Metrics (note, the following combines elements in both the presentation

and the cited paper above)
e Schema Metrics
Relationship Richness
o Attribute Richness
o Inheritance Richness
o Inheritance depth (from slides)
o Schema depth (from slides)
e Instance Metrics
o KB Metrics
m Average Population
m Cohesion (connectedness / from slides)
m Class Utilitization (from slides)
m Class Instance Distribution (from slides)
o Class Metrics
m Fullness
Inheritance Richness
Relationship Richness
Connectivity (centrality)
Readability
Class Importance (popularity) / from slides
m Relationship Utilization (from slides)
o Relationships Specific Metrics (from slides)
m Relationship Importance (popularity)

o

16

http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OntoQA--SamirTartir-IsmailcemBudakArpinar-AmitSheth_20130131.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087

Ontology Scoring

Score = Sum(W_i * Metric_i)

Metric_i: {Relationship diversity, Schema Depth, Class Utilization, Cohesion,
Avg(Connectivity(Ci)), Avg(Importance(Ci)), Avg(Relationship Utilization(Ci)),
Avg(Importance(Ri)), #Classes,

#Relationships, #Instances}

W_i: Set of tunable metric weights

Barry Smith’s ideas
Ontological realism as a strategy for integrating ontologies (Essentially - Basic Formal Ontology
- BFO as an Upper Ontology) with Domain Ontology at 3rd level. IS THIS TOO FORMAL?

Ontology Summit February 7. 2013 (Test this link - | was trying to link to his Presentation itself
... this link works. .. but | am curious who “I” is. ... now | know, it's BobSmith ... Thank you, Bob.

=ppy)

on REAL STUFF seems useful to include in this Requirements Doc...
Feb 7, 2013 - slide 10 -
e Are we building ontologies so that they converge?
(The problem of ‘knowledge representation’) and Strategy wrt Levels of Onto (Upper to Domain
Levels?)

e Are we using Evidence-based ontology development?
Q: What is to serve as constraint?
A1: Authority (I tell you what to do)
A2: Homesteading (Founder effect)
A3: Best candidate terminology
But what does ‘best’ mean?
A4: Voting ?
But then on what grounds should people vote?

Page 15 -
e - Level 1: the entities in reality, both instances and universals
* Level 2: cognitive representations of this reality, e.g. on the part of scientists ...
e - Level 3: publicly accessible concretizations of these cognitive representations in
textual and graphical artifacts
e Are we keeping the Three Levels “Straight”?

17

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013#nid3MSI

Page 17 hitp://iospress.metapress.com/content/1551884412214u67/?
issue=3&genre=article&spage=139&issn=1570-5838&volume=5

Smith and Ceusters, “Ontological Realism as a Methodology for Coordinated Evolution of
Scientific Ontologies”, Applied Ontology, 5 (2010), 139-188

Duque Ramos et al - OQuare

ref: http://miuras.inf.um.es/evaluation/oquare/
ref2: http://miuras.inf.um.es/oquarewiki

also: Duque-Ramos et al - “OQuaRE: A SQuaRE-based approach for evaluating the quality of
ontologies” (2011)

Characteristics

e Structural: Formal and semantic important ontological properties that are widely used
in state of-the-art evaluation approaches. Some sub-characteristics are formalisation,
formal relations support, cohesion, tangledness, redundancy and consistency.

e Functional adequacy: An ontology is evaluated for this criterion according to the
degree of accomplishment of functional requirements, that is, the appropriateness for its
intended purpose according to Stevens and Lord (2009): reference ontology, controlled
vocabulary, schema and value reconciliation, consistent search and query, knowledge
acquisition, clustering and similarity, indexing and linking, results representation,
classifying instances, text analysis, guidance and decision trees, knowledge reuse,
inferencing, and precision.

e Reliability: Capability of an ontology to maintain its level of performance under stated
conditions for a given period of time. Recoverability and availability are some of its sub-
characteristics.

e Operability: Effort needed for using an ontology, and in the individual assessment
of such use, by a stated or implied set of users, and it is measured through sub-
characteristics such as learnability.

e Maintainability: The capability of ontologies to be modified for changes in
environments, in requirements or in functional specifications. Some sub-characteristics
are modularity, reusability, analysability, changeability, modification stability and
testability.

e Compatibility: The ability of two or more software components to exchange information
and/or to perform their required functions while sharing the same hardware or software
environment

e Transferability: The degree to which the software product can be transferred from one
environment to another

e Performance efficiency: Relationship between the level of performance of the software
and the amount of resources used, under stated conditions, taking into account
elements such as the time response, or memory consumption.

18

http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://iospress.metapress.com/content/1551884412214u67/?issue=3&genre=article&spage=139&issn=1570-5838&volume=5
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_OQuaRE--FernandezBreis-DuqueRamos-RobertStevens-AussenacGilles_20130131.pdf
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/evaluation/oquare/
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://miuras.inf.um.es/oquarewiki
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf
http://www.cs.man.ac.uk/~stevensr/papers/OQuareProof.pdf

Quality in use: Quality in a particular context of use. Quality in use is the degree to
which a product used by specific users meets their needs to achieve specific goals

Ontology Quality Metrics
Sub-characteristics

Structural

Formalisation: An efficient ontology has to be built on top of a formal model to support
reasoning.

Formal relations support: Most ontologies only have formal support for taxonomy. The
usage of additional formal theories would be a positive indicator.

Cohesion: An ontology has a high cohesion if the classes are strongly related.
Tangledness: This measures the distribution of multiple parent categories, so that it is
related to the existence of multiple inheritance, which is usually a sign of suboptimal
design.

Redundancy: Capability of the ontology to be informative

Structural accuracy: Degree of the correctness of the terms used in the ontology
Consistency: Degree of the consistency of the ontology

Cycles: The existence of cycles through a particular semantic relation is usually a sign of
bad design, since they may lead to inconsistencies.

Functional adequacy

Schema and value reconciliation: An ontology can provide a common data model that
can be applied to particular views for their reconciliation and integration. Ontologies
facilitate the achievement of semantic interoperability if they are able to provide the
semantic context for data and information.
Consistent search and query:

o The formal model of the ontology allows for better querying and searching

methods.
o The ontology structure can guide search processes if they provide a semantic
context to evaluate the data wanted by the users.

o This semantic context is provided by the concepts,

o This semantic context is provided by all the machine computable properties

o This semantic context is provided by the axioms.
Knowledge reuse: Degree to which the knowledge of an ontology can be used to build
other ontologies.
Knowledge acquisition: Ontologies are templates for generating the forms by which
instances are acquired.
Domain coverage: The degree to which the ontology covers the specified domain
Reference ontology: Degree in which the ontology can be used as a reference resource
for the particular domain the ontology is built for.
Controlled vocabulary: Capability of the ontology to avoid heterogeneity of the terms
Knowledge acquisition — representation.: Capability of the Ontology to represent the
knowledge acquired.

19

Clustering: Degree in which the annotations of data with respect to ontology terms can
be used for clustering such data against the aspects of the ontology

Similarity: Capability of the component of the ontology to be compared for similarity
Indexing and linking: Degree in which the classes defined in the ontology can act as
indexes for quick information retrieval

Results representation: Capability of the ontology to analyze complex results such as
microarrays experiments

Classifying instances: Degree in which ontology Instances can be recognized as
member of a certain class

Text analysis: Capability of the structure of the ontology to help detect associations
between words or concepts and classifying word types.

Guidance: Capability of the ontology to guide the specification of domain theories.
Decision trees: Capability of the ontology to be used building Decision trees.
Knowledge reuse: The degree to which the ontology knowledge can be used to build
other ontologies.

Inference: The degree to which the formal model of the ontology can be used by
reasoners to make implicit knowledge explicit.

Maintainability

Modularity: The degree to which the ontology is composed of discrete components such
that a change to one component has a minimal impact on other components. Changes
in ontologies may lead to unexpected effects, like inconsistencies, in the ontology.
Reusability: The degree to which a part of the ontology can be reused in more than one
ontology, or to build other ontologies.

Analysability: The degree to which the ontology can be diagnosed for deficiencies or
causes of inconsistencies, or for the parts to be modified to be identified.
Changeability: The degree to which the ontology enables a specified modification to be
implemented. The ease with which an ontology can be modified

Modification stability: The degree to which the ontology can avoid unexpected effects
from modifications of the knowledge (terms, classes, properties, etc..).

Testability: The degree to which the modified ontology can be validated.

Compatibility

Replaceability: The degree to which the ontology can be used in place of another specified
Ontology for the same purpose in the same environment.

Interoperability: The degree to which the ontology can be cooperatively operable combining its
knowledge with one or more other ontologies.

Transferability

Portability: The degree in which an Ontology or one part of the ontology can be transferred from
one hardware or software environment to another

Adaptability: The degree to which The ontology can be adapted for different specified
environments (languages, expressivity levels) without applying actions or means other than those
provided for this purpose for the Ontology considered.

20

Operability

e Appropriateness recognisability: The degree to which the Ontology enables users to recognise
whether it is appropriate for their needs.

Learnability: The degree to which the ontology enables users to learn its application.

Ease of operation: The degree to which the ontology makes it easy for users to operate it
Ease of control: The degree to which the ontology makes it easy for users to control it.

Ease of use: The degree to which the ontology makes it easy for users to use it in some other
way.

e Helpfulness: The degree to which the ontology provides help when users need assistance.

Reliability

e Error detection: The degree to which the ontology enables users to detect faults.

e Recoverability: The degree to which the ontology can re-establish a specified level of
performance and recover the data directly affected in the case of a failure.

e Availability: The degree to which an ontology or part of it is operational and available when
required for use with different applications

Performance Efficiency

e Response time: The degree to which the ontology provides appropriate response times from
performing its function (Queries and reasoning) under stated conditions

e Processing time: The degree to which the ontology provides appropriate processing times from
performing its function (Queries and reasoning) under stated conditions

e Throughput rates: The degree to which the ontology provides appropriate throughput rates when
performing its function (Queries and reasoning), under stated conditions.

e Resource Utilization: The degree to which the application uses appropriate amounts of resources
when the ontology performs its function (Queries and reasoning) under stated conditions.

e Resource Utilization: The degree to which the application uses appropriate types of resources
when the ontology performs its function (Queries and reasoning) under stated conditions.

Metrics (page 47 of the paper)
* Lack of Cohesion in Methods (LCOMOnto):
The semantic and conceptual relatedness of classes can be used to measure the
separation of responsibilities and independence of components of ontologies.
It is calculated as follows:
LCOMOnto=} path(|C(leaf)i |)/m,
where path |C(leaf)i| is the length of the path from the leaf class i to Thing,
where m is the total number of paths in the ontology.
» Weighted Method Count (WMCOnto):
Mean number of properties and relationships per class.
It is calculated as follows:
WMCOnto=(3|P Ci|+>| RCi|)/>|Ci| ,
where Ci is the i-th class in the ontology.
* Depth of subsumption hierarchy (DITOnto):

21

Length of the largest path from Thing to a leaf class.
It is calculated as follows:
DITOnto=Max (3> D|Ci |),
where Ci are the classes
where D|Ci | is length of the path from the ith leaf class of the ontology to Thing.
* Number of Ancestor Classes (NACOnto):
Mean number of ancestor classes per leaf class.
It is the number of direct superclasses per leaf class,
It is calculated as follows:
NACOnto=} |SupC(Leaf)i|/> |C(leaf)i)|

* Number of Children (NOCOnto):
Mean number of direct subclasses.
It is the number of relationships divided by the number of classes minus the relationships
of Thing)
Itis calculated as follows:
NOCOnto=3| R Ci|A>|Ci | -| RThing|)

* Coupling between Objects (CBOOnNto):
Number of related classes.
It is the average number of the direct parents per class minus the relationships of Thing,
It is calculated as follows:
CBOOnto=} |SupCi|/(>|Ci | -| RThing|)

* Response for a class (RFCOnto):
Number of properties that can be directly accessed from the class.
It is calculated as follows:
RFCOnto=(|P Ci|+>|SupCi|/(>|Ci| -| RThing|)
* Number of properties (NOMOnto):
Number of properties per class.
It is calculated as follows:
NOMOnto=3| PCi|/3|Ci |
* Properties Richness (RROnto):
Number of properties defined in the ontology divided by the number of relationships and
properties.
It is calculated as follows:
RROnto=}| P Ci|/> (| R Ci| + 3|Ci|)

* Attribute Richness (AROnto):
Mean number of attributes per class.
Itis calculated as follows:
AROnto=} |AttCi| /Y |Ci |
* Relationships per class (INROnto):

22

Mean number of relationships per class.
It is calculated as follows:
INRONto=%| R Ci| / ¥|Ci |

* Class Richness (CROnto):
Mean number of instances per class.
It is calculated as follows:
CROnto=>]| 1 Ci| / Y|Ci |;

where | Ci, is the set of individuals of the Ci class.

* Annotation Richness (ANOnto):
Mean number of annotations per class.
Itis calculated as follows:
ANOnNto=3| A Ci|/ 3|Ci |;
where Ci is the i-th class in the ontology.

» Tangledness (TMOnto):
Mean number of parents per class.
It is calculated as follows:
TMOnto=3| R Ci| / |Ci |-X|C(DPY)i |;
where Ci is the i-th class in the ontology

where C(DP)i is the i-th class in the ontology with more than one direct parent.

23

Ontology Features:

Annotation

Argument Constraints
Inter-Argument Constraints
Argument Type Conclusion
Denotational Functions
Metaclasses

Non-Binary Predicates

Single Class Hierarchy Root
Multiple Class Hierarchy Roots
Class Covering

Class Partitioning

Term Mapping To Natural Language
Term Mapping To Controlled Vocabulary
Ontology Inheritance

Open world reasoning

Closed world reasoning

Logic Features (determine class of logic: type of DL, First-Order, Second-Order, ...)

Atomic Negation

Concept Intersection

Complex Concept Negation
Universal Quantification

Full Existential Quantification
Transitive Roles

Inverse Properties

Irreflexivity

Reflexivity

Qualified Cardinality Restrictions
Binary Predicate Disjointness
First Order Implications
Quantification Over Classes
Quantification Over Predicates
Quantification Over Functions
Enumerated Classes
Datatypes

Ontology Tool features

Reasoning upon data entry - Detection of self-disjointness
Reasoning upon data entry - Detection of predicate inheriting from two incompatible
predicates

24

; Cyc ontology of some ontology evaluation concepts

default mt: UniversalVocabularyMt.

Constant: OntologyEvaluationVocabularyMt.

isa: VocabularyMicrotheory.

genIMt: UniversalVocabularyMt.

in mt: OntologyEvaluationVocabularyMt.

comment: "The ontology for terms for expressing characteristics of ontologies, ontology
languages, and evaluation of both.".

Constant: OntologyEvaluationMt.

isa: TheoryMicrotheory.

genlMt-Vocabulary: OntologyEvaluationVocabularyMt.

in mt: OntologyEvaluationMt.

comment: "The ontology for expressing characteristics of ontologies, ontology languages, and
evaluation of both.".

default mt: OntologyEvaluationVocabularyMt.

Constant: Metaclass.

isa: VariedOrderCollection CollectionType.

genls: CollectionType.

comment: "A #$Metaclass is a class all of whose instances are themselves classes.".
definingMt: OntologyEvaluationVocabularyMt.

Constant: TemporalClass.

isa: Metaclass SecondOrderCollection.

genls: FirstOrderCollection.

typeGenls: TemporalThing.

comment: "A #$TemporalClass is a class which is a subclass of #$TemporalThing.".
definingMt: OntologyEvaluationVocabularyMt.

Constant: RigidClass.

isa: Metaclass SecondOrderCollection.

genls: FirstOrderCollection.

typeGenls: Individual.

comment: "A #$RigidClass is a class, all of whose instances are individuals which are
necessarily instances of the class so long as they exist. Instances of #$RigidClass may exist in
time (e.g. Homo sapiens) or be timeless (e.g., numbers or Platonic shapes).".

definingMt: OntologyEvaluationVocabularyMt.

in mt: OntologyEvaluationMt.

f: (implies

25

(and

(isa ?RCLASS RigidClass)

(holdsIn ?TIME1 (isa ?X ?RCLASS))
(temporallySubsumes ?TIME2 ?RCLASS))
(holdsIn ?TIMEZ2 (isa ?X ?RCLASS))).

Constant: RigidTemporalClass.

isa: Metaclass SecondOrderCollection.

genls: RigidClass TemporalClass.

comment: "A #$RigidTemporalClass is a temporal class, all of whose instances are individuals
which are necessarily instances of the class so long as they exist.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: SemiRigidClass.

isa: Metaclass SecondOrderCollection.

genls: TemporalClass.

disjointWith: RigidClass.

comment: "A #$SemiRigidClass is a temporal class, some of whose instances are individuals
which are necessarily instances of the class so long as they exist, while other instances may
cease to be instances of the class yet continue to exist. E.g., HardObject, since diamonds are
necessarily hard, but the hardness of a piece of plastic may depend upon its temperature.”.
definingMt: OntologyEvaluationVocabularyMt.

Constant: AntiRigidClass.

isa: Metaclass SecondOrderCollection.

genls: TemporalClass.

disjointWith: RigidClass SemiRigidClass.

comment: "An #$AntiRigidClass is a temporal class, none of whose instances are necessarily
instances of the class so long as they exist. E.g., Baby or Student.".

definingMt: OntologyEvaluationVVocabularyMt.

Constant: InitialClass.

isa: Metaclass SecondOrderCollection.

genls: AntiRigidClass.

comment: "An #$InitialClass is a temporal class, all of whose instances are individuals which
are necessarily instances of the class when the instance started to exist, but may cease to be
instances of the class yet continue to exist. Once they cease to be instances of the class, they
can not later become instances again. E.g., Virgin.".

definingMt: OntologyEvaluationVocabularyMt.

in mt: OntologyEvaluationMt.

f: (implies
(and

26

(isa ?ICLASS InitialClass)

(holdsIn ?TIME1 (isa ?X ?ICLASS))

(startingPoint ?X ?TIMEZ2))

(holdsIn ?TIMEZ2 (isa ?X ?ICLASS))).
f: (implies

(and

(isa ?ICLASS InitialClass)

(holdsIn ?TIME1 (isa ?X ?ICLASS))

(endsAfterEndingOf ?TIME1 ?TIME2)

(startsAfterStartingOf ?TIME2 ?X))

(holdsIn ?TIME2 (isa ?X ?ICLASS))).

Constant: NonlnitialClass.
isa: Metaclass SecondOrderCollection.
genls: AntiRigidClass.
disjointWith: InitialClass.
comment: "A #$NonlnitialClass is a temporal class, none of whose instances were instances
of the class when the instance started to exist, but later became instances of the class. E.g.,
Student.".
definingMt: OntologyEvaluationVocabularyMt.
in mt: OntologyEvaluationMt.
f: (implies
(and
(isa ?NICLASS NonlnitialClass)
(holdsIn ?TIME1 (isa ?X ?NICLASS))
(startingPoint ?X ?TIMEZ2))
(not (holdsIn ?TIME2 (isa ?X ?ICLASS)))).

Constant: TerminalClass.

isa: Metaclass SecondOrderCollection.

genls: AntiRigidClass.

disjointWith: InitialClass.

comment: "A #$TerminalClass is a temporal class, some of whose instances were not instances
of the class when the instance started to exist, but once they became instances of the class
they continue to be instances while they continue to exist. E.g., Murderer.".

definingMt: OntologyEvaluationVocabularyMt.

in mt: OntologyEvaluationMt.

f: (implies
(and
(isa ?TCLASS TerminalClass)

27

(holdsIn ?TIME1 (isa ?X ?TCLASS))

(endingPoint ?X ?TIMEZ2))

(holdsIn ?TIME2 (isa ?X ?TCLASS))).
f: (implies

(and

(isa ?7TCLASS TerminalClass)

(holdsIn ?TIME1 (isa ?X ?TCLASS))

(startsAfterStartingOf ?TIME2 ?TIME1)

(endsAfterEndingOf ?X ?TIME2))

(holdsIn ?TIME2 (isa ?X ?TCLASS))).

Constant: OccasionalClass.

isa: Metaclass SecondOrderCollection.

genls: NonlnitialClass.

disjointWith: TerminalClass.

comment: "An #$OccasionalClass is a temporal class, whose instances may be instances of
the class at one time and not at another. An individual after it has ceased being an instance of
#$OccasionalClass can become one again. E.g., Student.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: ClassificationSystem.

isa: ObjectType.

genls: AspatiallnformationStore.

comment: "A specialization of #$AspatiallnformationStore. Each instance of
#$ClassificationSystem is an agreed-upon or conventional classification system consisting of
several #3ConventionalClassificationTypes. In such a system, a change or reclassification is
possible by a decision of an authority, or by a changed social agreement, without changing the
intrinsic natures of the actual objects in the classificatory categories. ClassificationSystems
include biological taxonomies, standard classifications, data dictionaries, thesauri, and calendar
systems.".

Constant: termiInClassificationSystem.
isa: BinaryPredicate.
quotedArgument: 1.

arg1Quotedlsa: Thing.

arg2lsa: ClassifiationSystem.

comment: "<code>(#$termInClassificationSystem TERM CLASSIFICATION)</code> means
that the term TERM is classified in the #$ClassificationSystem <code>CLASSIFICATION</
code>.".

28

Constant: Taxonomy.

isa: ObjectType.

genls: ClassificationSystem.

comment: "The class of all taxonomic systems. A taxonomy of classes includes a hierarchical
division of a domain along class/subclass (see #$ClassSubclassHierarchy) lines, partonomic
lines, or possibly similar transitive binary predicates (e.g. derivedFrom). A taxonomy of relations
may be specified using subrelationOf as the taxonomic predicate. A #$StrictTaxonomy is one

in which each node has a single parent and all siblings are disjoint. A taxonomy can be usefully
contrasted with an ontology (see Ontology), the latter of which includes a rich description of a
domain, often including non-binary relations and complex rules.".

Constant: taxonomicRelationOf.

isa: BinaryPredicate.

arg1lsa: Taxonomy.

arg2lsa: BinaryPredicate.

comment: "(#$taxonomicRelationOf BIN_PRED TAXONOMY) means that the binary relation
BIN_PRED is the taxonomic relation for the #$Taxonomy TAXONOMY.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: StrictTaxonomy.

isa: ObjectType.

genls: Taxonomy.

comment: "The class of all taxonomic systems in which each node has a single parent and all
siblings are disjoint.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: ClassSubclassHierarchy.

isa: ObjectType.

genls: Taxonomy.

comment: "The collection of all taxonomic systems that describe a domain only along
class (elementOf) and sub-class (subsetOf) lines. Such a hierarchy may be either a
#3$StrictTaxonomy or a #$SubclassDAG.".

Constant: SubclassDAG.

isa: ObjectType.

genls: ClassSubclassHierarchy.

disjointWith: StrictTaxonomy.

comment: "The collection of all taxonomic systems that describe a domain only along class
(elementOf) and sub-class (subsetOf) lines and permit classes to have multiple superclasses.".
definingMt: OntologyEvaluationVocabularyMt.

Constant: StrictClassSubclassTaxonomy.
isa: ObjectType.

genls: ClassSubclassHierarchy StrictTaxonomy.

29

comment: "The collection of all taxonomic systems that describe a domain only along
class (elementOf) and sub-class (subsetOf) lines. Such a hierarchy may be either a
#$StrictTaxonomy or a #5SubclassDAG.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: PartonomicTaxonomy.

isa: ObjectType.

genls: Taxonomy.

disjointWith: ClassSubclassHierarchy.

comment: "The collection of all taxonomic systems that describe a domain only along
partonomic (partTypeOf) lines. Such a hierarchy may be either a #$StrictTaxonomy or

a #3SubclassDAG. The partonomic relation may be, for example, temporal, physical, or
organizational. The relation may be narrower in one part of the taxonomy than in another.".
definingMt: OntologyEvaluationVocabularyMt.

Constant: partonomicRelationForTaxonomy.

isa: BinaryPredicate.

arg1lsa: PartonomicTaxonomy.

arg2lsa: BinaryPredicate.

genlPreds: taxonomicRelationOf.

comment: "(#$partonomicRelationForTaxonomy PART_PRED PART_TAXONOMY) means
that the partonomic relation (i.e., a subrelation of #$partTypes) PART_PRED is the taxonomic
relation for the #$PartonomicTaxonomy PART_TAXONOMY.".

definingMt: OntologyEvaluationVocabularyMt.

Constant: Ontology.

isa: ObjectType.

genls: ClassificationSystem Technology-Artifact StructuredinformationSource .

comment: "The collection of organized conceptual structures in which types of things form a
generalization hierarchy and in which properties are defined to hold between instances of the
types of things.".

in mt: OntologyEvaluationMt.

properPartTypes: ClassSubclassHierarchy.

f: (relationAllExists properSubSystems Ontology ClassSubclassHierarchy).

Constant: Relation.
isa : RelationshipType.
genls : Abstractindividual MathematicalObject.

30

comment: "#$Relation is the class of all relations. Each instance of Relation is a relation
that can hold among one or more things, depending on whether the relation is unary, binary,
ternary, ... (see #$arity and #$relationalArity).

An important subcollection of #$Relation is #$Predicate (g.v.), whose instances return true or
false (with respect to a given context or interpretation).

Another important subcollection of #$Relation is #$Function-Denotational (g.v.), the collection of
all functions.".

Constant: FixedArityRelation.

isa : RelationshipType.

genls : Relation.

comment: "#$FixedArityRelation is the collection of all relations whose arity is constant, so that
the relation #$arity applies.".

Constant: arity.

isa: BinaryPredicate.

arg1lsa: FixedArityRelation.

arg2lsa: NonNegativelnteger.

comment: "A #$Relation used for stating that a given relation takes a specified number of
arguments. <code>(#$arity RELN N)</code> means that that semantic well-formedness
requires that <code>RELN</code> take exactly <code>N</code>arguments at a time. That is, a
formula <code>(RELN ARG1 ... ARGM)</code> is semantically well-formed only if <code>M =
N</code>.

For example, the arity of any instance of #$BinaryPredicate is 2.".

Constant: UnaryRelation.

isa : RelationshipType.

genls : FixedArityRelation.

comment: "#$UnaryRelation is the collection of all relations whose arity is 1.".
f: (relationAlllnstance arity UnaryRelation 1).

Constant: BinaryRelation.

isa : RelationshipType.

genls : FixedArityRelation.

comment: "#$BinaryRelation is the collection of all relations whose arity is 2.".
disjointWith: UnaryRelation.

f: (relationAllinstance arity BinaryRelation 2).

Constant: TernaryRelation.
isa : RelationshipType.

31

genls : FixedArityRelation.

comment: "#$TernaryRelation is the collection of all relations whose arity is 3.".
disjointWith: UnaryRelation BinaryRelation.

f: (relationAlllnstance arity TernaryRelation 3).

Constant: QuarternaryRelation.

isa : RelationshipType.

genls : FixedArityRelation.

comment: "#$QuarternaryRelation is the collection of all relations whose arity is 4.".
disjointWith: UnaryRelation BinaryRelation TernaryRelation.

f: (relationAlllnstance arity QuarternaryRelation 4).

Constant: VariableArityRelation.

isa : RelationshipType.

genls : Relation.

comment: "#$VariableArityRelation is the collection of all relations whose arity is not restricted
to a single value. For example, a function or predicate for expressing sums of two or more
values.".

disjointWith: FixedArityRelation.

Constant: Predicate.

isa : RelationshipType.

genls : Relation.

comment: "#$Predicate is the class of all relations whose instances return true or false

(with respect to a given context or interpretation). Each instance of #$Predicate is either a
property of things (see #$UnaryPredicate) or a relationship holding between two or more things.
Expressions using predicates along with their arguments are used to form sentences.".

Constant: FixedArityPredicate.

isa : RelationshipType.

genls : Predicate FixedArityRelation.

comment: "#$FixedArityPredicate is the collection of all predicates whose arity is constant, so
that the relation #$arity applies.".

Constant: UnaryPredicate.

isa : RelationshipType.

genls : FixedArityPredicate UnaryRelation.

comment: "#$UnaryPredicate is the collection of all predicates whose arity is 1.".

Constant: BinaryPredicate.

32

isa : RelationshipType.
genls : FixedArityPredicate BinaryRelation.
comment: "#$BinaryPredicate is the collection of all predicates whose arity is 2.".

Constant: TernaryPredicate.

isa : RelationshipType.

genls : FixedArityPredicate TernaryRelation.

comment: "#$TernaryPredicate is the collection of all predicates whose arity is 3.".

Constant: QuarternaryPredicate.

isa : RelationshipType.

genls : FixedArityPredicate QuarternaryRelation.

comment: "#$QuarternaryPredicate is the collection of all predicates whose arity is 4.".

Constant: VariableArityPredicate.

isa : RelationshipType.

genls : Predicate VariableArityRelation.

comment: "#$VariableArityPredicate is the collection of all predicates whose arity is not
restricted to a single value. For example, a predicate for expressing sums of two or more
values.".

Constant:ReflexiveBinaryPredicate.
isa : RelationshipType.
genls : BinaryPredicate .
comment: "A #$BinaryPredicate PRED is an #$ReflexiveBinaryPredicate if and only if it has
the following two properties. (i) For any THING1 that meets the argument constraints of each
of PRED's argument places (PRED THING1 THING1) holds. (ii) PRED's two argument-places
must be co-satisfiable with respect to their type constraints.".
f: (implies

(and

(isa ?PRED ReflexiveBinaryPredicate)

(arg1lsa ?PRED ?ARG1TYPE)

(arg2lsa ?PRED ?ARG2TYPE)

(genls ?2ARG1TYPE Individual)

(isa ?X ?ARG1TYPE)

(isa ?X ?ARG2TYPE))

(?PRED ?X ?X)).
f. (implies

(and

(isa ?PRED ReflexiveBinaryPredicate)

(arg1lsa ?PRED ?ARG1TYPE)

(arg2lsa ?PRED ?ARG2TYPE)

(arg1Genl ?PRED ?ARG1SUPER)

(arg2Genl ?PRED ?ARG2SUPER))

33

(isa 2X 2ARG1TYPE)
(isa ?X ?2ARG2TYPE)
(genl 2X ?ARG1SUPER)
(genl X 2ARG2SUPER))
(?PRED ?X ?X)).

Constant: IrreflexiveBinaryPredicate.
isa : RelationshipType.
genls : BinaryPredicate .
comment: "A #$BinaryPredicate PRED is an #$IrreflexiveBinaryPredicate if and only if it has
the following two properties. (i) For any THING1 that meets the argument constraints of each of
PRED's argument places (PRED THING1 THING1) does not hold. (ii) PRED's two argument-
places must be co-satisfiable with respect to their type constraints.".
disjointWith: ReflexiveBinaryPredicate.
f. (implies

(and

(isa ?PRED lIrreflexiveBinaryPredicate)

(?PRED ?X ?Y))

(different ?X ?Y)).

Constant: SymmetricBinaryPredicate.
isa : RelationshipType.
genls : BinaryPredicate.
comment: "A #$BinaryPredicate PRED is a #3SymmetricBinaryPredicate if and only if for any
things X and Y, if (PRED X Y) then (PRED Y X). The argument type constraints on PRED's two
argument-places are co-satisfiable.".
f: (implies
(and
(isa ?PRED SymmetricBinaryPredicate)
(?PRED ?X ?Y))
(?PRED ?Y ?X)).

Constant: AntiSymmetricBinaryPredicate.
isa : RelationshipType.
genls : BinaryPredicate.
comment: "A #$BinaryPredicate PRED is an #$AntiSymmetricBinaryPredicate if and only if
it has the following two properties. (i) For any THING1 and THING2 such that both (PRED
THING1 THING2) and (PRED THING2 THING1) hold, THING1 = THING2. (ii) PRED's two
argument-places must be co-satisfiable with respect to their type constraints.".
f: (implies

(and

(isa ?PRED AntiSymmetricBinaryPredicate)

(?PRED ?X ?Y)

(?PRED ?Y ?X))

34

(equals ?X ?Y)).

Constant: AsymmetricBinaryPredicate.
isa : RelationshipType.
genls : AntiSymmetricBinaryPredicate IrreflexiveBinaryPredicate.
comment: "A #$BinaryPredicate PRED is an #3AsymmetricBinaryPredicate if and only if it
has the following two properties. (i) For any THING1 and THING2 such that if (PRED THING1
THING2) holds, (PRED THING2 THING1) does not hold. (ii) PRED's two argument-places must
be co-satisfiable with respect to their type constraints.".
f: (implies

(and

(isa ?PRED AsymmetricBinaryPredicate)

(?PRED ?X ?Y))

(not (?PRED ?Y ?X))).

Constant: CoEquivalenceBinaryPredicate.

isa : RelationshipType.

genls : SymmetricBinaryPredicate IrreflexiveBinaryPredicate.

comment: "A #$BinaryPredicate PRED is an #$CoEquivalenceBinaryPredicate if and only if it
has the following two properties. (i) For any THING1 and THING2 such that if (PRED THING1
THING2) holds and THING1 is different from THING2, (PRED THING2 THING1) holds. (ii) Thre
is no THING1 such that (PRED THING1 THING1) holds. (iii) PRED's two argument-places must
be co-satisfiable with respect to their type constraints.".

Constant: ReflexiveBinaryPredicate.

isa : RelationshipType.

genls : BinaryPredicate.

comment: "A #$ReflexiveBinaryPredicate is a #$BinaryPredicate whose instances are reflexive
relations. A reflexive binary predicate relates anything that meets the predicate's argument
constraints to that thing itself. A reflexive predicate has precisely the same constraints on both
of its argument-places.

More precisely: a binary predicate PRED is an instance of ReflexiveBinaryPredicate if and
only if both (i) for every X that satisfies the constraints on (i.e is an admittedArgument for) both
argument-places of PRED, (PRED X X) holds and (ii) PRED's two argument-places are co-
satisfiable with respect to their (single-argument) type constraints.".

Constant: TransitiveBinaryPredicate .
isa : RelationshipType.
genls : BinaryPredicate.

35

comment: "A specialization of #$BinaryPredicate. A binary predicate PRED is an instance of
#3$TransitiveBinaryPredicate only if it has the following property: For any THING1, THINGZ2, and
THINGS3, if both of these hold:

(PRED THING1 THING2)
(PRED THING2 THING3)

Then so does this:
(PRED THING1 THING3) .

PRED's two argument-places must be co-satisfiable.".

Constant: AntiTransitiveBinaryPredicate.

isa : RelationshipType.

genls : IrreflexiveBinaryPredicate.

comment: "A specialization of #$BinaryPredicate. A binary predicate PRED is an instance of
#$AntiTransitiveBinaryPredicate only if it has the following property: For any THING1, THING2,
and THINGS3, if both of these hold:

(PRED THING1 THINGZ2)
(PRED THING2 THING3)

Then :
(PRED THING1 THING3)
does not hold.

PRED's two argument-places must be co-satisfiable.".

Constant: FunctionalPredicate.

isa : RelationshipType.

genls : Predicate UnaryRelation.

comment: "#$FunctionalPredicate is the collection of all predicates such that if a statement
headed by that predicate is true with all but (one of) its functional argument bound, there is no
true statement with that argument substituted by any non-equal value.".

disjointWith: CoEquivalenceBinaryPredicate.

f: (implies
(and
(isa ?FPRED FunctionalPredicate)
(functionallnArg ?FPRED 1)
(?FPRED ?X)
(?FPRED ?Y))

36

(equals ?X ?Y)).

f: (implies
(and
(isa ?FPRED FunctionalPredicate)
(functionallnArg ?FPRED 1)
(?FPRED ?X ?A2)
(?FPRED ?Y ?A2))
(equals ?X ?Y)).

f: (implies
(and
(isa ?FPRED FunctionalPredicate)
(functionallnArg ?FPRED 1)
(?FPRED ?A1 ?X)
(?FPRED ?A1 ?Y))
(equals ?X ?Y)).

; and similar rules for higher arity

f: (implies
(and
(isa ?PRED ReflexiveBinaryPredicate)
(isa ?PRED FunctionalPredicate))
(isa ?PRED AntiSymmetricBinaryPredicate)).

Constant: Function-Denotational.

isa : RelationshipType.

genls : Relation.

disjointWith : Predicate

comment : "A specialization of #$Relation (q.v.) and the collection of all functions. Each
instance of #3Function-Denotational is a many-one relation that represents, with respect to any
given context, a mapping from one set of things (the function's relationDomain) to another set
of things (its relationRange). As a many-one relation, a function maps each thing in its domain
to exactly one thing in its range. A function might be unary, binary, ternary, etc. depending

on whether the members of its domain are singletons, ordered pairs, ordered triples, etc. The
function is said to take the items from any its N arguments and to return a member of its range
as its corresponding value . There are also functions that are not of any particular fixed arity;
see #$VariableArityFunction.

Note that the domain and range (i.e. the extension) of a given function might vary from context
to context. For example, as the government of a country can change over time, GovernmentFn
will in such cases map the same country to different governments with respect to different times.
Thus, an instance of Function-Denotational is closer to what is sometimes called a " “function-in-
intension" than to the purely set-theoretical notion of a ~*function-in-extension".

37

Function-Denotational does not include any of the so-called truth functions: Predicates,
Quantifiers, or LogicalConnectives." .

Constant: OntologyWithArgumentConstraints.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which type constraints on arguments for relations can
be expressed.".

Constant: OntologyWithoutArgumentConstraints.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which type constraints on arguments for relations
cannot be expressed.".

disjointWith: OntologyWithArgumentConstraints.

Constant: OntologyWithInterArgumentConstraints.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which type constraints between arguments for
relations can be expressed.".

Constant: OntologyWithoutInterArgumentConstraints.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which type constraints between arguments for
relations cannot be expressed.".

disjointWith: OntologyWithArgumentConstraints.

Constant: OntologyWithArgumentTypeConclusion.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which the class of an argument may be logically
concluded from its use in a relation.".

Constant: OntologyWithoutArgumentTypeConclusion.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies in which the class of an argument may not be logically
concluded from its use in a relation.".

38

disjointWith: OntologyWithArgumentTypeConclusion.

Constant: OntologyWithDenotationalFunctions.
isa: ObjectType.
genls: Ontology.
comment: "The collection of ontologies which contains denotational functions (instances of
#3$Function-Denotational).".
f: (implies
(isa 7ONTOL OntologyWithDenotationalFunctions)
(thereExists ?FUNC
(and
(isa ?FUNC Function-Denotational)
(termInClassificationSystem ?FUNC ?ONTOL)))).
f: (implies
(and
(isa ?FUNC Function-Denotational)
(termInClassificationSystem ?FUNC ?ONTOL))
(isa 70ONTOL OntologyWithDenotationalFunctions)).

Constant: OntologyWithoutDenotationalFunctions.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies which contains denotational functions (instances of
#$Function-Denotational).".

disjointWith: OntologyWithDenotationalFunctions.

Constant: OntologyWithOnlyBinaryPredicates.
isa: ObjectType.
genls: Ontology.
comment: "The collection of ontologies all of whose predicates are binary.".
f: (implies
(and
isa ?PRED Predicate)
isa 7ONTOL OntologyWithOnlyBinaryPredicates)
termInClassificationSystem ?PRED ?ONTOL))
isa ?PRED BinaryPredicate)).

—_~ A~~~

Constant: OntologyWithNonBinaryPredicates.
isa: ObjectType.
genls: Ontology.
comment: "The collection of ontologies which contains predicates that are not binary.".
disjointWith: OntologyWithOnlyBinaryPredicates.
f: (implies
(and

39

(isa ?PRED Predicate)

(not (isa ?PRED Predicate))
(termInClassificationSystem ?PRED ?ONTOL))
(isa 70ONTOL OntologyWithNonBinaryPredicates)).

Constant: OntologyWithSingleClassHierarchyRoot.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies all of whose classes share a single common
superclass.".

Constant: OntologyWithoutSingleClassHierarchyRoot.

isa: ObjectType.

genls: Ontology.

comment: "The collection of ontologies which have classes that do not have a common
superclass.".

disjointWith: OntologyWithSingleClassHierarchyRoot.

Constant: ClassCovering.
isa: OntologyFeature.
comment: "Class covering is the definition of covering sets of subclasses of a class.".

Constant: ClassPartitioning.

isa: OntologyFeature.

genls: ClassCovering.

comment: "Class partitioning is the definition of disjoint sets of covering subclasses of a class.".

Constant: TermMappingToNL.
isa: OntologyFeature.

Constant: TermMappingToControlledVocabulary.
isa: OntologyFeature.

Constant: Ontologylnheritance.
isa: OntologyFeature.

Constant: LogicFeature.
isa: ObjectType.

genls: RelationalStructure.
comment: "".

40

Concept: AtomicNegation.

isa: LogicFeature.

comment: "#$AtomicNegation is negation of concept names that do not appear on the
consequent of axioms.".

termStrings: "atomic negation".

Concept: Classlintersection.
isa: LogicFeature.
comment: "#$ClassIntersection is the logical feature of computing the intersection of two
classes/types of things.".
termStrings: "class intersection

concept intersection”.

Concept: UniversalQuantification.
isa: LogicFeature.

comment: "#$UniversalQuantification is the logical feature of allowing the use of ““for all" in
logical statements.".

termStrings: "universal restrictions

universal quantification".

Concept: LimitedExistentialQuantification.

isa: LogicFeature.

comment: "#$LimitedExistentialQuantification is the logical feature of allowing the use of “there
exists" (at least one) in logical statements without restricting membership in a class.".

Concept: RoleRestriction.

isa: LogicFeature.

comment: "#$RoleRestriction is the logical feature of allowing the specification that the
instances of a specific class have a restricted range (possibly a single value) for a given binary
predicate.".

Concept: FullExistentialQuantification.

isa: LogicFeature.

comment: "#$F ullExistentialQuantification is the logical feature of allowing the use of “there
exists (at least one) X such that X is an instance of".".

f: (partOf LimitedExistentialQuantification FullExistentialQuantification).

Concept: TransitiveRoles.

isa: LogicFeature.

comment: "#$TransitiveRoles is the logical feature of allowing the specification of
#3$TransitiveBinaryPredicates.".

Concept: FunctionalProperties.
isa: LogicFeature.

41

comment: "#$FunctionalProperties is the logical feature of allowing the specification of
#$FunctionalBinaryPredicates.".
nameStrings: "functional properties" "F".

Concept: ConceptUnion.

isa: LogicFeature.

comment: "#$ConceptUnion is the logical feature of allowing the specification of the union of
two classes.".

nameStrings: "concept union" "U".

Concept: ComplexConceptNegation.

isa: LogicFeature.

comment: "#$ComplexConceptNegation is the logical feature of allowing negation of non-atomic
terms.".

nameStrings: "C" "complex concept negation”.

Concept: BinaryRelationHierarchy.

isa: LogicFeature.

comment: "#$BinaryRelationHierarchy is the logical feature of allowing specification of a
hierarchy of binary relations.".
nameStrings: "H" "role hierarchy

subproperties" "binary relation hierarchy".

Concept: SubRelationHierarchy.
isa: LogicFeature.

comment: "#$SubRelationHierarchy is the logical feature of allowing specification of a hierarchy
of subrelations not resticted to binary relations.".
nameStrings: "subproperties" "subrelation hierarchy

relation hierarchy".

Concept: IrReflexivity.

isa: LogicFeature.

comment: "#$IrReflexivity is the logical feature of allowing specification of reflexive and
irreflexive binary relations.".

nameStrings: "reflexivity and irreflexivity" "(ir)reflexivity" .

Concept: BinaryPredicateDisjointness.

isa: LogicFeature.

comment: "#$BinaryPredicateDisjointness is the logical feature of allowing specification that two
binary relations are incompatable.".

nameStrings: "role disjointness" "binary predicate disjointness" "binary predicate
incompatability" .

Concept: EnumeratedClasses.
isa: LogicFeature.

42

comment: "#$EnumeratedClasses is the logical feature of allowing specification of classes with
enumerated instances.".
nameStrings: "O" "nominals

enumerated classes".

Concept: InverseProperties.

isa: LogicFeature.

comment: "#$InverseProperties is the logical feature of allowing specification of two binary
predicates being inverses of each other, i.e., (PRED1 X Y) <=> (PRED2 Y X).".
nameStrings: "I" "inverse properties".

Concept: CardinalityRestrictions.

isa: LogicFeature.

comment: "#$CardinalityRestrictions is the logical feature of allowing specification of a class,
all of whose instances have a specified limited number of fillers of the range of a given binary
predicate.".

nameStrings: "N" "cardinality restrictions".

Concept: QualifiedCardinalityRestrictions.

isa: LogicFeature.

comment: "#$QualifiedCardinalityRestrictions is the logical feature of allowing specification of
a class, all of whose instances have a specified limited number of fillers of the range of a given
binary predicate which are instances of a specified type.".

f: (partOf CardinalityRestrictions QualifiedCardinalityRestrictions).

nameStrings: "Q" "qualified cardinality restrictions".

Concept: DatatypeProperties.

isa: LogicFeature.

comment: "#$DatatypeProperties is the logical feature of allowing specification of predicates
whose range is a set of datatypes such as numbers, character strings, or some restricted range
thereof.".

nameStrings: "(D)" "datatype properties" "data values" "data types".

Concept: FirstOrderimplications.

isa: LogicFeature.

comment: "#$Implications is the logical feature of allowing specification of rules of the form
(forAll (X,...) (implies (and SENTENCE1 ...) CONCLUSION_SENTENCE)) with the variables
X,... having their values restricted to instances of #$Individual.".

nameStrings: "first-order implications".

Concept: QuantificationOverClasses.
isa: LogicFeature.

43

comment: "#$QuantificationOverClasses is the logical feature of allowing quantification (forAll
or thereExists with the values of the variables (X,...) being permitted to be classes in addition to
being instances of #3$Individual.".

nameStrings: "quantification over classes".

Concept: QuantificationOverPredicates.

isa: LogicFeature.

comment: "#$QuantificationOverPredicates is the logical feature of allowing quantification (forAll
or thereExists with the values of the variables (X,...) being permitted to be predicates in addition
to being instances of #$Individual.".

nameStrings: "QuantificationOverPredicates".

Concept: QuantificationOverFunctions.

isa: LogicFeature.

comment: "#$QuantificationOverPredicates is the logical feature of allowing quantification (forAll
or thereExists with the values of the variables (X,...) being permitted to be functions in addition
to being instances of #$Individual.".

nameStrings: "QuantificationOverFunctions".

Concept: LogicSystem.

isa: ObjectType.

genls: NormativeSpecification.
comment: "".

Concept: logicalFeatureOfSystem.

isa: BinaryPredicate.

arg1lsa: LogicSystem.

arg2lsa: LogicFeature.

comment: "(#3$logicalFeatureOfSystem LOGIC FEATURE) means that the #$LogicSystem
LOGIC has the #$LogicFeature FEATURE.".

Constant: DescriptionLogic.

isa: ObjectType.

genls: LogicSystem.

comment: "Description logic is a family of logic systems. Description logics are more expressive
than propositional logic but less expressive than first-order predicate logic.".

Constant: ALCDescriptionLogic.

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection
LimitedExistentialQuantification UniversalQuantification.

Constant: SHIQDescriptionLogic.

44

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
LimitedExistentialQuantification UniversalQuantification TransitiveRoles
BinaryRelationHierarchy QualifiedCardinalityRestrictions.

Constant: ALCOINDescriptionLogic.

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
LimitedExistentialQuantification UniversalQuantification EnumeratedClasses
InverseProperties CardinalityRestrictions.

Constant: SHOINDDescriptionLogic.

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
LimitedExistentialQuantification UniversalQuantification EnumeratedClasses
InverseProperties CardinalityRestrictions TransitiveRoles DatatypeProperties
BinaryRelationHierarchy.

Constant: SROIQDDescriptionLogic.

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
UniversalQuantification LimitedExistentialQuantification TransitiveRoles
EnumeratedClasses InverseProperties DatatypeProperties IrReflexivity
QualifiedCardinalityRestrictions BinaryPredicateDisjointness.

Constant: SHIFDDescriptionLogic.

isa: DescriptionLogic.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation

UniversalQuantification LimitedExistentialQuantification TransitiveRoles
BinaryRelationHierarchy InverseProperties FunctionalProperties DatatypeProperties.

Constant: FirstOrderLogic.

isa: LogicSystem.

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
UniversalQuantification FullExistentialQuantification TransitiveRoles
InverseProperties IrReflexivity QualifiedCardinalityRestrictions
BinaryPredicateDisjointness FirstOrderimplications
EnumeratedClasses DatatypeProperties .

Constant: SecondOrderLogic.
isa: LogicSystem.

45

logicalFeatureOfSystem: AtomicNegation Conceptintersection ComplexConceptNegation
UniversalQuantification FullExistentialQuantification TransitiveRoles
InverseProperties IrReflexivity QualifiedCardinalityRestrictions
BinaryPredicateDisjointness FirstOrderimplications
QuantificationOverClasses QuantificationOverPredicates QuantificationOverFunctions
EnumeratedClasses .

; TemporalObjectType ; #$TemporalObjectType
; TemporalStuffType ; #$TemporalStuffType

; SpatialObjectType ; #3ExistingObjectType

; SpatialStuffType ; #$ExistingStuffType

Maria Poveda-Villalén, Mari Carmen Suarez-Fiqueroa and Asuncion Gémez-

Pérez)

also: Poveda-Villalon, M. et al “Validating Ontologies with OOPS!” (2012)

also” http://oa.upm.es/5413/1/

A DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf

e Human understanding dimension refers to whether the ontology provides enough
information so that it can be understood from a human point of view. This aspect is
highly related to the ontology documentation and clarity of the code.

e Logical consistency dimension refers to whether (a) there are logical inconsistencies
or (b) there are parts of the ontology that could potentially lead to an inconsistency but
they cannot be detected by a reasoner unless the ontology is populated.

e Modelling issues dimension refers to whether the ontology is defined using the
primitives provided by ontology implementation languages in a correct way, or whether
there are modelling decision that could be improved.

e Ontology language specification dimension refers to whether the ontology is
compliant (e.g., syntax correctness) with the specifications of the ontology language
used to implement the ontology

e Real world representation dimension refers to how accurately the ontology represents
the domain intended for modelling. This dimension should be checked by humans (e.g.,
ontology engineers and domain experts).

e Semantic applications dimension refers to whether the ontology is fit for the software
that uses it, for example checking availability, format compatibility, etc.

Pitfall Catalog Table

46

http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://ontolog.cim3.net/file/work/OntologySummit2013/2013-01-31_OntologySummit2013_OntologyEvaluation-IntrinsicAspects/OntologySummit2013_Ontology-pitfalls-OOPS--PovedaVillalon-SuarezFigueroa-GomezPerez_20130131.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/14384/1/mpovedaEtAlCameraReady.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf
http://oa.upm.es/5413/1/A_DOUBLE_CLASSIFICATION_OF_COMMON_PITFALLS_IN_ONTOLOGIES.pdf

(page 5 of paper, slide 8 of presentation)

P1. Creating polysemous elements: an ontology element whose name has different meanings
is included in the ontology to represent more than one conceptual idea. For example, the

class “Theatre” is used to represent both the artistic discipline and the place in which a play is
performed.

P2. Creating synonyms as classes: several classes whose identifiers are synonyms are
created and defined as equivalent. As an example we could define “Car”, “Motorcar” and
“Automobile” as equivalent classes. Another example is to define the classes “Waterfall” and
“Cascade” as equivalents. This pitfall is related to the guidelines presented in [X7X] which
explain that synonyms for the same concept do not represent different classes.

W " ITH

P3. Creating the relationship “is” instead of using “subclassOf”, “instanceOf” or
“samelndividual’: the “is” relationship is created in the ontology instead of using OWL

primitives for representing the subclass relationship (“subclassOf’), the membership to a class
(“instanceOf”), or the equality between instances (“sameAs”). An example of this type of pitfall is
to define the class “Actor” in the following way ,Actor = Person interprets.Actuation is.Man".
This pitfall is related to the guidelines for understanding the “is-a” relation provided

in [X7X].

P4. Creating unconnected ontology elements: ontology elements (classes, relationships or
attributes) are created with no relation to the rest of the ontology. An example of this type of
pitfall is to create the relationship “memberOfTeam” and to miss the class representing teams;
thus, the relationship created is isolated in the ontology.

P5. Defining wrong inverse relationships: two relationships are defined as inverse relations
when actually they are not. For example, something is sold or something is bought; in this case,
the relationships “isSoldIn” and “isBoughtIn” are not inverse.

P6. Including cycles in the hierarchy [X4X, X7X]: a cycle between two classes in the
hierarchy is included in the ontology, although it is not intended to have such classes as
equivalent. That is, some class A has a subclass B and at the same time B is a superclass of A.
An example of this type of pitfall is represented bythe class “Professor” as subclass of “Person”,
and the class “Person” as subclass of “Professor”.

P7. Merging different concepts in the same class: a class is created whose identifier is
referring to two or more different concepts. An example of this type of pitfall is to create the
class “StyleAndPeriod”, or “ProductOrService”.

P8. Missing annotations: ontology terms lack annotations properties. This kind of properties
improves the ontology understanding and usability from a user point of view.

P9. Missing basic information: needed information is not included in the ontology. Sometimes
this pitfall is related with the requirements in the ORSD [X12X, X13X] that are not covered by
the ontology. Other times it is related with knowledge that could be added to the ontology in
order to make it more complete. An example of this type of pitfall is to create the relationship
“startsin” to represent that the routes have a starting point in a particular location; and to miss
the relationship “endsIn” to show that a route has an end point. Another example is to create the
relationship “follows” when modelling order relations; and do not create its

inverse relationship “precedes”.

47

P10. Missing disjointness [X4X, X7X, X11X]: the ontology lacks disjoint axioms between
classes or between properties that should be defined as disjoint. For example, we can create
the classes “Odd” and “Even” (or the classes “Prime” and “Composite”) without being disjoint;
such representation is not correct based on the definition of these types of numbers.
P11. Missing domain or range in properties: relationships and/or attributes without domain or
range (or none of them) are included in the ontology. There are situations in which the relation
is very general and the range should be the most general concept “Thing”. However, in other
cases, the relations are more specific and it could be a good practice to specify its domain
and/or range. An example of this type of pitfall is to create the relationship “hasWritten” in an
ontology about art in which the relationship domain should be “Writer” and the relationship
range should be “LiteraryWork”. This pitfall is related to the common error when defining ranges
and domains described in [X11X].
P12. Missing equivalent properties: when an ontology is imported into another, classes that
are duplicated in both ontologies are normally defined as equivalent classes. However, the
ontology developer misses the definition of equivalent properties in those cases of duplicated
relationships and attributes. For example, the classes “CITY” and “City” in two different
ontologies are defined as equivalent classes; however, relationships “hasMember” and “has-
Member” in two different ontologies are not defined as equivalent relations.
P13. Missing inverse relationships: there are two relationships in the ontology that should
be defined as inverse relations. For example, the case in which the ontology developer omits
the inverse definition between the relations “hasLanguageCode” and “isCodeOf”, or between
‘hasReferee” and “isRefereeOf”.
P14. Misusing “allValuesFrom” [X11X]: this pitfall can appear in two different ways. In the
first, the anomaly is to use the universal restriction (“allValuesFrom”) as the default qualifier
instead of using the existential restriction (“someValuesFrom”). This means that the developer
thinks that “allValuesFrom” implies “someValuesFrom”. In the second, the mistake is to include
“allValuesFrom” to close off the possibility of further additions for a given property. An example
of this type of pitfall is to define the class “Book” in the following way ,Book = producedBy.Writer
uses.Paper” and closing the possibility of adding “Ink” as an element used in the writing.
P15. Misusing “not some” and “some not” [X11X]: to mistake the representation of “some
not” for “not some”, or the other way round. An example of this type of pitfall is to define a
vegetarian pizza as any pizza which both has some topping which is not meat and also has
some topping which is not fish. This example is explained in more detail in [X11].
P16. Misusing primitive and defined classes [X11X]: to fail to make the definition “complete"
rather than ,partial® (or ,necessary and sufficient" rather than just ,necessary). It is critical to
understand that, in general, nothing will be inferred to be subsumed under a primitive class
by the classifier. This pitfall implies that the developer does not understand the open world
assumption. A more detailed explanation and examples can be found in [X11X].
P17. Specializing too much a hierarchy: the hierarchy in the ontology is specialized in such a
way that the final leaves cannot have instances, because they are actually instances and should
have been created in this way instead of being created as classes. Authors in [X7X] provide
guidelines for distinguishing between a class and an instance when modelling hierarchies.
An example of this type of pitfall is to create the class “RatingOfRestaurants” and the classes
“1fork”, “2forks”, and so on, as subclasses instead of as instances. Another example is to create

48

the classes “Madrid”, “Barcelona”, “Sevilla”, and so on as subclasses of “Place”. This pitfall
could be also named “Individuals are not Classes”.

P18. Specifying too much the domain or the range [X7X, X11X]: not to find a domain or a
range that is general enough. An example of this type of pitfall is to restrict the domain of the
relationship “isOfficialLanguage” to the class “City”, instead of allowing also the class “Country”
to have official language or a more general concept such as “GeopoliticalObject”.

P19. Swapping intersection and union: the ranges and/or domains of the properties
(relationships and attributes) are defined by intersecting several classes in cases in which the
ranges and/or domains should be the union of such classes. An example of this type of pitfall
is to create the relationship “takesPlaceln” with domain “OlympicGames” and with range the
intersection of the classes “City” and “Nation”. Another example can be to create the attribute
“‘Name” for the classes “City” and “Drink” and to define its domain as the intersection of both
classes. This pitfall is related to the common error that appears when defining ranges and
domains described in [X11X] and also related to the guidelines for defining these elements
provided in [X7X].

P20. Swapping Label and Comment: the contents of the Label and Comment annotation
properties are swapped. An example of this type of pitfall is to include in the Label annotation of
the class “Crossroads” the following sentence “the place of intersection of two or more roads®;
and to include in the Comment annotation the word ,Crossroads".

P21. Using a miscellaneous class: to create in a hierarchy a class that contains the
instances that do not belong to the sibling classes instead of classifying such instances

as instances of the class in the upper level of the hierarchy. This class is normally

named “Other” or “Miscellaneous”. An example of this type of pitfall is to create the class
“HydrographicalResource”, and the subclasses “Stream”, “Waterfall”, etc., and also the subclass
“OtherRiverElement”.

P22. Using different naming criteria in the ontology: no naming convention is used in the
identifiers of the ontology elements. Some notions about naming conventions are provided in
[X7X]. For example, we can name a class by starting with upper case, e.g. “Ingredient”, and its
subclasses by starting with lower case, e.g. “animalorigin”, “drink”, etc.

P23. Using incorrectly ontology elements: an ontology element (class, relationship or
attribute) is used to model a part of the ontology that should be modelled with a different
element. A particular case of this pitfall regarding to the misuse of classes and property

values is addressed in [X7X]. An example of this type of pitfall is to create the relationship
“isEcological” between an instance of “Car” and the instance “Yes” or “No”, instead of creating
the attribute “isEcological” whose range is Boolean.

P24. Using recursive definition: an ontology element is used in its own definition. For
example, it is used to create the relationship “hasFork” and to establish as its range the
following “the set of restaurants that have at least one value for the relationship “hasFork”

Human understanding
P1. Creating polysemous elements
P2. Creating synonyms as classes

49

P7. Merging different concepts in the same class
P8. Missing annotations

P11. Missing domain or range in properties

P12. Missing equivalent properties

P13. Missing inverse relationships

P19. Swapping intersection and union

P20. Misusing ontology annotations

P22. Using different naming criteria in the ontology
Modelling issues

P2. Creating synonyms as classes

P3. Creating the relationship “is” instead of using "rdfs:subClassOf", "rdf:type" or "owl:sameAs"
P4. Creating unconnected ontology elements

P5. Defining wrong inverse relationships

P6. Including cycles in the hierarchy

P7. Merging different concepts in the same class
P10. Missing disjointness

P17. Specializing too much a hierarchy

P11. Missing domain or range in properties

P12. Missing equivalent properties

P13. Missing inverse relationships

P14. Misusing "owl:allValuesFrom"

P15. Misusing “not some” and “some not”

P18. Specifying too much the domain or the range
P19. Swapping intersection and union

P21. Using a miscellaneous class

P23. Using incorrectly ontology elements

P24. Using recursive definition

P25. Defining a relationship inverse to itself

P26. Defining inverse relationships for a sym-metric one
P27. Defining wrong equivalent relationships

P28. Defining wrong symmetric relationships

P29. Defining wrong transitive relationships
Logical consistency

P5. Defining wrong inverse relationships

P6. Including cycles in the hierarchy

P14. Misusing "owl:allValuesFrom"

P15. Misusing “not some” and “some not”

P18. Specifying too much the domain or the range
P19. Swapping intersection and union

P27. Defining wrong equivalent relationships

P28. Defining wrong symmetric relationships

P29. Defining wrong transitive relationships

Real world representation

P9. Missing basic information

50

P10. Missing disjointness

Ontology Evaluation with Respect to Specific Requirements
Track A Synthesis, Obrst (this is captured above)
Also covered in West, above
In Dugue-Ramos, et al, above, re Functional adequacy
Track B Synthesis. Longstreth & Schneider
Extrinsic aspects to be considered include,
e requirements and their verification
e how metrics can be derived from requirements
e how 'good' requirements relevant to ontology can be crafted
e fitness for purpose
[]

Bennett

Matthews

Vizedom

Luciano

capability questions

From several slide sets in session 7

Ontology requirements that may be derived from business requirements
e Lexical
o Multiple Lexicons mapped to same ontology
o Lexical coverage for particular language, locality, or user community (technical
background, organization-based, shared activity-based, at particular time)
o Lexical detail on expressions (e.g. POS, case, ...) supporting natural language
processing (stem, morph, etc)
e Logical (expressibility of supporting structures for; existence of & compatibility wit
reasoners for;...)
o Rules
o Quantification
o Variables

51

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Extrinsic_Aspects_Of_Ontology_Evaluation_Synthesis
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_28
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_02_28

o Variable that range over [classes|relations|statements]
o Deductive reasoning

o monotonic - non-monotonic reasoning

o Probabilistic

o modal

Specific content
o Sufficient to express and answer particular questions or kinds of questions
o Sufficient to support semantic [matching|disambiguation|indexing|retrieval] over a
particular corpus or stream
Sufficient to express and support capture of typical data in a stream
Sufficient to support modeling of simple or complex objects in a particular domain
Sufficient to support [manual|semi-automated|automated] classification of objects
in a particular domain
o Sufficient to support classification of information objects in a particular domain
Specific alignment
o with standards
o with other ontologies
o with regulations
provenance and tracing
included provenance of assertions
included provenance of inferences
support expression of provenance of new assertions
support expression of provenance of new inferences

O O O O

52

