BACnet Ontology Hackathon
From text and ASN.1 to OWL
Project Plan

• Get a buy-in that a BACnet Ontology was worth doing, get some support

• Write some templates that take the Python library I’ve already written and generate OWL

• Feed the generated OWL into validators

• Spend a few hours interpreting error messages, if any

• Adjust the templates a bit, celebrate success
Plan Slams into Reality

• Picking an OWL format harder than expected
 • too many to choose from; OWL Fn, OWL/XML, RDF/XML, Turtle
 • no clean round-trip, statements about individuals dropped

• Examples of fundamental CS constructs hard to find (atoms/literals, lists, sets, objects)

• Data modeling and set theory don’t work well together

• You keep using [subclass], I do not think it means what you think it means ~ Inigo Montoya
Pre-Hackathon Progress

• Start with the simplest concepts, the “primitive data types”
• Most everything matches well
 • booleans, integers, strings are simple
 • binary data (blobs) not so bad
 • date/time can’t be mapped (wildcard values) - s’OK
• Mental collision with named values (enumerations) and identifiers as data types
Primitive Data

- Null
- Boolean
- Unsigned
- Integer
- Real
- Double
- Octet String
- Character String
- Bit String
- Enumerated
- Date
- Time
- Object Identifier
Null is Interesting

• Null is used as both a data type and as a special value, usually reserved for values that mean “this is not the droid you’re looking for”

• A “priority array” might have any number of values in it corresponding to conflicting algorithms, null would mean “I have no opinion.” “Highest” priority rules.

• Created a Null class and a null owl:NamedIndividual
Enumerations are Interesting

- Enumerations are just like colors in C or Pascal; red=0, green=1, blue=2
- Some enumerations are defined in the standard, vendors can come up with their own
- Some enumerations are defined in the standard and vendors can extend them with their own values, as long as they are not in the range reserved for ASHRAE
-
- owl:NamedIndividual’s for enumerations

![Diagram showing the relationship between standard enumerated types and proprietary enumerated types with reserved and vendor ranges.](image)
Bit Strings are Interesting

- Bit strings are collections of bits, very similar to colors; red=0, green=1, blue=2
- A bit string can have more than one bit set, otherwise BACnet would have defined it as an enumerated
- Bit “1” in some bit string is not the same bit as bit “1” in some other bit string
- owl:NamedIndividual’s for individual bits
Object Identifiers are Interesting

- Object identifiers are 32-bit packed structures with an object type and instance number.
- The object type can be one of the standard types or a vendor type by using a value that is in the range reserved for extending the object type enumeration.
Hackathon Session

- Extracted pieces of Turtle and put them, along with design commentary, on project web site
- Reviewed the design with the team (Peter, Steve, Mike, Jacob)
- Identified many fundamental problems
 - mixing objects and datatypes
 - domains/ranges for restrictions
 - use SKOS for ordered collections and sets
- It only gets worse
Sequence’s and Choice’s

• A Sequence is analogous to a structure in C, a JSON object, or an element in Minimal XML

• Sequence elements can be optional or required, context tagged or not, and be any primitive or constructed data type
Sequence’s and Choice’s

- AtomicReadFile-Request ::= SEQUENCE {
 fileIdentifier BACnetObjectIdentifier,
 accessMethod CHOICE {
 streamAccess [0] SEQUENCE {
 fileStartPosition INTEGER,
 requestedOctetCount Unsigned
 },
 recordAccess [1] SEQUENCE {
 fileStartRecord INTEGER,
 requestedRecordCount Unsigned
 }
 }
}
Sequence’s and Choice’s

- { "$type": "AtomicReadFileRequest",
 fileIdentifier: { type: "file", instance: 1 },
 accessMethod: {
 streamAccess: {
 fileStartPosition: 50,
 requestedOctetCount: 100
 }
 }
}

- Can structured type elements be things in their own right, as well as properties of the structures they help describe?
Objects and Properties

- Objects “have” properties
- All objects have some standard properties that are required
- Standard objects have additional required and optional properties
- Vendors can define their own properties for standard types (property identifiers are extended enumerations)
- Vendors can define their own types (object type identifiers are extended enumerations) which use standard properties or their own
- Property values can be any Primitive or Constructed data type.
Cognitive Disconnect

• Saying what something *is*, what it *could be*, what it *cannot be*

• Subclass, domain, and range - they don’t mean what you think they mean

• No canonical examples - simple statements found on the web have errors, can’t be easily converted between formats

• Flat namespace - like going back to FORTRAN - modularize?
Wrong tool? or wrong job?

• It’s not clear that OWL is appropriate for data modeling

• It’s not clear where the BACnet lexicon (with the normative text) stops (where the effort to ontologize it should stop) and the data model begins

• Effort continues to be worthwhile; highlights areas where API needs to improve, something needs to be the anchor for BIM, building automation sensor networks, smart grid