Ontology Summit 2013: Ontology Evaluation Across the Ontology Lifecycle Virtual Panel Session 09, Track C – March 14, 2013

Developing Quality Ontologies Used for Reasoning

Dr. Leo Obrst
Information Semantics
Information Discovery & Understanding
Command & Control Center
MITRE

General Methodological Issues

- Assume every new ontology will be developed for automated reasoning unless explicitly ruled-out (and knowing the consequences of ruling it out)
 - This means: know the rough complexity of the semantic model you need
 - E.g., if your reasoning requirements are very large-grained (e.g., determining which topic bucket should this document be placed in) you probably don't need an ontology and the reasoning you need is minimal
- Typically you will want to reason over both the classes and the instances, i.e., what kinds of things are there, and what are the things of that kind?
 - Description Logics: T-Box vs. A-Box; but most ontology languages do not make such a hard/fast distinction
- Choose an ontology reasoning architecture: depends on the kind of reasoning you will do
 - DL classificational reasoning only?
 - Real "rule" reasoning?

Ontology Spectrum: Complexity of **Applications**

What do you want to do? What kind of reasoning?

- Build an ontology, build a knowledge base
- Check consistency of your knowledge
- Check completeness of your knowledge
- I.e., Model checking, model finding
- Automatically classify new concepts, assertions
- Query the KB (search & navigation)
- Perform other inference (sometimes called rule-based reasoning)
 - Deduction
 - Induction
 - Abduction
- Add probabilistic reasoning
- Reason over beliefs (Truth Maintenance Systems), i.e., evidential reasoning
- Have built in modal operators: necessity/possibility, obligation/permission/prohibition, temporal, etc.
- No Reasoning without Representation!

2004-2007: We had to develop our own ontology/rule reasoning system

Rules not expressible in SWRL were represented in Prolog directly

Ontology Content Architecture: You Need an Architecture!

* Adapted from: Herre, Heinrich, and Frank Loebe. 2005. A Meta-ontological Architecture for Foundational Ontologies. In: R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1398–1415, 2005. Springer-Verlag Berlin Heidelberg.

Ontology Evaluation Criteria

- Ontology coverage of a particular domain
 - The richness, complexity and granularity of that coverage
 - The specific use cases, scenarios, requirements, applications, and data sources it was developed to address
- Formal properties of the language in which it is modeled:
 - Soundness: any expression that can be derived from the knowledge base (KB) of the ontology and its instances is logically implied by that KB)
 - Completeness: any expression that is logically implied by the KB can be derived
 - Decidability: being both sound and complete). All of these will correlate with the formal complexity (time of execution, space of memory needed to compute an answer. Decidability of a language or logic does not mean tractability of the automated reasoning on that language, but there is a relationship
 - Consistency: can contradictions be proven?
 - E.g., circularity, disjoint partition errors, incorrect classifications
- Ontology incompleteness:
 - Imprecisely defined or missing concepts, partially defined disjointness properties, redundancy of class, instance, or relation

Ontologies can be Evaluated per Questions

- Is the ontology mappable to some specific upper ontology, so that its evaluation will be at least partially dependent on the evaluation of the latter also?
- What is the ontology's underlying philosophical theory about reality?
 - Idealist: reality is dependent on mind or is ultimately mental in nature
 - Realist: universals or invariant patterns really exist independently of minds (and observers)
 - Conceptualist: universals are neither independently existing nor just names but exist only in human and possibly other animal minds as abstractions from particulars
 - Nominalist: only particulars exist and universals do not exist in reality or in our minds but only as general terms
 - 3-dimensionalist: space and time exist independently and material objects are extended in space and endure through time,
 - 4-dimensionalist: only a combined spacetime exists; etc.
- What kinds of reasoning methods can be invoked on the ontology, i.e., by the inference engine that uses it?

Additional Issues for Ontology Evaluation

- Aligning with other existing ontologies, e.g., importing OWL ontologies
 - All the entailments of the imported ontology now hold of the importing ontology
 - Establishing equivalence relations between classes/properties of the importing and imported ontologies
 - Term agreement (assuming the semantics can be read off the term name) is prone to error
- But importing ontologies may introduce inconsistencies, even or especially when equivalences are made between classes/properties of the importing and imported ontologies
- Meta-properties: Transitivity, Reflexivity, Symmetry
 - In OWL these are available axioms, i.e., in addition to Subclass (which is Transitive, Reflexive, Anti-Symmetric), you can define your own properties which have these
 - Are partOf/hasPart properties transitive? Always?
 - Maybe it's better to import an upper/foundational ontology that defines these?
- Defining additional, content-based meta-properties: e.g., OntoClean's determination of "rigidity" value correlation between a parent and a child node in the taxonomic backbone

Task-Based Evaluation of Ontologies: Requirements, etc.

- The human ability to formulate queries using the query language provided by the ontology
- The accuracy of responses provided by the system's inferential component (and there may be more than one)
- The degree of explanation capability offered by the system
- The coverage of the ontology in terms of:
 - The degree of reuse across domains
 - The scalability of the knowledge base
 - The ease of use of the query component
- Are the constructs of the ontology (classes, properties, instances in OWL; predicates and axioms in other KR languages) annotated?
 - Descriptions, comments in natural language about intended meaning, synonyms/antonyms, examples, citations and other provenance information, i.e., alignment suggestion with other ontologies?

Collaborative Ontology Development: Evaluation Issues

- Common practice in large efforts is insulating your ontology module from other simultaneous ontology development
 - May require integrative or "overlay" ontologies that act as integration bridges between the given ontologies
 - Not only importing, but bridging
- Maintenance, redeployment, adding new applications
 - Requires Versioning of all ontologies: not just syntactic, but semantic
 - Periodic retesting of consistency of the ontology modules
 - Regression testing: queries and rules must be tested again and again, to gauge effect, evaluated

Example: Inheritance of Properties, Subsumption

- Developing a sound taxonomic backbone, i.e., a central subClass subsumption taxonomy is very important: $\forall x P(x) \rightarrow Q(x)$
 - Nearly everything else in the ontology depends on this
 - This is the transitive, reflexive, anti-symmetric classification pipeline
 - Mathematically, it makes the core ontology a partially-ordered set
 - Parent classes subsume children classes
 - Subsumption: usually defined extensionally, i.e., the parent class when considered as a set of subsets (classes) with members (instances) includes those sets and their members

Example: Inheritance of Properties: Disjoint & Exhaustive Partitioning?

 Disjoint: We can declare by axiom • that Canine is Disjoint from Reptile

```
<owl:Class rdf:about="#Canine">
  <rdfs:subClassOf rdf:resource="#Mammal"/>
  </owl:Class>

<owl:Class rdf:about="#Primate">
  <rdfs:subClassOf rdf:resource="#Mammal"/>
  <owl:disjointWith rdf:resource="#Canine"/>
  </owl:Class>
```

Exhaustive Partioning: Union AND Disjoint in OWL 2 (contrived)

13

Use of Formal Ontological Analysis: OntoClean & Other Sound Approaches*

Ontology Development should be based on the following theories:

- Theory of Parts: Mereology or mereotopology? Is parthood transitive? Some, some not.
- Theory of Wholes: what is the difference between a part and a whole?
- Theory of Essence and Identity: what are essential, i.e., necessary, properties? If you lose a necessary property, you lose identity. If John loses an arm, he's still John. But if he loses his head? Is he John if he's dead?
- Theory of Dependence: some things and properties depend on others
- Theory of Qualities: features, attributes, qualia, quality spaces?
- Theory of Composition and Constitution: Venus de Milo statue? Gold bar?
- Theory of Participation: a conceptual framework for describing and analyzing communicative phenomena, agency, community, problem-solving, intersects formal pragmatics, speech acts, intents, etc.
- Theory of Representation: how does one thing represent another? Map represent a region? Plan or specification represent real world steps? Artifact represent function?
- Theory of Time, Spacetime, and Events: Events and States, bridging these.

Real Business-to-Business E-Commerce example: Supply Chain Properties (from VerticalNet, 2000)

- Where you are in the supply chain determines the sub-ontology you need
- But you must bridge to your down/upstream supply chain partners
- Chemical Manufacturer requires:
 - Physical classes and properties:
 - Chemical elements, chemical compounds, chemical reactions, valency, etc.
 - Chemical processes: change or combine chemicals, chemical compounds, but also: chemical manufacturing processes (chemical engineering, etc.)
 - Purity, volatility, etc.
- Paint Manufacturer requires:
 - Functional classes and properties:
 - Light Reflectivity
 - Drying Time
 - Durability
 - Safety, exposure
 - Shelf life

Conclusion

Ontology Evaluation is hard ...

... because Quality Ontology Development is hard!

Thanks!

Backup

Ontology Development Process Plan: Based on MethOntology

Ontology Development Process Plan

Ontology Lifecycle

4) Analysis 3

- What are the resources available to harvest: vocabularies, schemas, taxonomies, conceptual models, ontologies?
- Are there domain standards, upper/middle ontologies to embed what we create within?

3) Analysis 2

- What are the referents, concepts: entities, relations, properties, rules?
- What are the terms that index the referents: terminology?
- 2) Analysis 1 (Competency Questions)
- Bottom-Up: What are semantics of current data sources?
- Top-Down: What would you like to ask?
- 1) Rationale: Why do you need an ontology?

8) Analysis 4

 Refine with domain experts, end users

9) Design 3

Refine conceptualization

10) Implement 2

Refine ontology

11) **Deploy 1**

 Provide ontology application services

12) Deploy 2

Correct problems

13) Analysis 5

- Interrogate users
- Refine regs
- More resources?

14) Design 4

- How can changes needed be made?
- Refine regs

5) Design 1

- What ontology architecture do we choose?
- How expressive is the ontology language we need?
- What conceptualization?
- How do we model these entities, relations, properties, rules?
- What are the instances of these?
- What data sources mappings can link to these? How?
- What kinds of ontology tools do we need?

6) Implement 1

- Implement the ontology server we will need: periodicity, granularity, configuration management
- Implement the infrastructure, services of our architecture: enhance the server with application, SOA support

7) Design 2

- Are we done with ontology development?
- Test competency questions as queries against ontology + data: are good answers returned quickly wrt domain experts/end users?

Ontology Maturity Model

Most Mature

OMM Level 4

Consistent semantics, models (fra linkage to a persistent & maintaine)

Consistent, pervasive capture of real domain semantics embedded under common middle/upper semantics (axiomatized ontologies); extensive inference

Consistent & pervasive capture of real domain semantics, represented as persistent & maintained models (frame ontologies, some axioms); some linkage to upper/middle; some inference supported;

Focus is on capture of real domain semantics, mostly represented as persistent & maintained models (frame ontologies); term resources linked to models; database and information extraction routines use some domain ontologies

OMM Level 2

Principled, consistent local semantics captured, some real domain semantics represented as persistent & maintained models (local ontologies); term & concept (referent) distinguished; databases and information extraction routines use local ontologies

OMM Level 1

Least Mature

Mainstream syntactic/structural DB technology (+ data warehouses + data marts), unstructured data addressed by procedural information extraction, no persistent linkage of semantics to syntax/structure, ad hoc local semantics sometimes captured in data dictionary & commented in extraneous code; no clear distinction made between term & concept (referent)