

Ontology Evaluation and Ranking using OntoQA

Samir Tartir Philadelphia University, Jordan

> I. Budak Arpinar University of Georgia

Amit P. Sheth Wright State University

Outline

Why ontology evaluation?

OntoQA

- Overview
- Metrics
- Overall Score
- Results

Enhancments

Why Ontology Evaluation?

- Having several ontologies to choose from, users often face the problem of selecting the ontology that is most suitable for their needs.
- Ontology developers need a way to evaluate their work

- A suite of metrics that evaluate the content of ontologies through the analysis of their schemas and instances in different aspects.
- It has been cited over 170 times.
- OntoQA is
 - tunable
 - requires minimal user involvement
 - considers both the schema and the instances of a populated ontology.

OntoQA Usage Scenario 1

OntoQA Usage Scenario 2

I. Schema Metrics

Address the design of the ontology schema.

- Schema could be hard to evaluate: domain expert consensus, subjectivity etc.
- Metrics:
 - Relationship diversity
 - Inheritance depth

I. Schema Metrics

Relationship diversity

This measure differentiates an ontology that contains mostly inheritance relationships (≈ taxonomy) from an ontology that contains a diverse set of relationships.

- Schema Depth
 - This measure describes the distribution of classes across different levels of the ontology inheritance tree

II. Instance Metrics

- Evaluate the placement, distribution and relationships between instance data
 - Can indicate the effectiveness of the schema design and the amount of knowledge contained in the ontology.

II. Instance Metrics

Overall KB Metrics

 This group of metrics gives an overall view on how instances are represented in the KB.

Class-Specific Metrics

 This group of metrics indicates how each class defined in the ontology schema is being utilized in the KB.

Relationship-Specific Metrics

 This group of metrics indicates how each relationship defined in the ontology schema is being utilized in the KB.

Overall KB Metrics

Class Utilization

 Evaluates how classes defined in the schema are being utilized in the KB.

- Evaluates how instances are spread across the classes of the schema.
- Cohesion (connectedness)
 Used to discover instance "islands".

 $CU = \frac{|C|}{|C|}$

CID = StdDev(Inst(Ci))

Coh = |CC|

Class-Specific Metrics

Class Connectivity (centrality)

This metric evaluates the importance of a class based on the relationships of its instances with instances of other classes in the ontology.

- Class Importance (popularity)
 - This metric evaluates the importance of a class based on the number of instances it contains compared to other classes in the ontology.

Relationship Utilization

 This metric evaluates how the relationships defined for each class in the schema are being used at the instances level. $Conn(C_i) = |NIREL(C_i)|$

 $Imp(C_i) = \frac{|Inst(C_i)|}{|KB(CI)|}$

 $RU(C_i) = \frac{\left| IREL(C_i) \right|}{\left| CREL(C_i) \right|}$

Relationship-Specific Metrics

Relationship Importance (popularity)

 This metric measures the percentage of instances of a relationship with respect to the total number of relationship instances in the KB.

$$Imp(R_i) = \frac{|Inst(R_i)|}{|KB(RI)|}$$

Ontology Score Calculation

 $Score = \sum W_i * Metric_i$

- Metric_i:
 - {Relationship diversity, Schema Depth, Class Utilization, Cohesion, Avg(Connectivity(C_i)), Avg(Importance(C_i)), Avg(Relationship Utilization(C_i)), Avg(Importance(R_i)), #Classes, #Relationships, #Instances}

W_i:

Set of tunable metric weights

Results

Symbol	Ontology URL
Ι	http://ebiquity.umbc.edu/ontology/conference.owl
II	http://kmi.open.ac.uk/semanticweb/ontologies/owl/aktive-portal-ontology-latest.owl
III	http://www.architexturez.in/+/c/caad.3.0.rdf.owl
IV	http://www.csd.abdn.ac.uk/~cmckenzi/playpen/rdf/akt_ontology_LITE.owl
V	http://www.mindswap.org/2002/ont/paperResults.rdf
VI	http://owl.mindswap.org/2003/ont/owlweb.rdf
VII	http://139.91.183.30:9090/RDF/VRP/Examples/SWPG.rdfs
VIII	http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
IX	http://www.mindswap.org/2004/SSSW04/aktive-portal-ontology-latest.owl

Swoogle Results for "Paper"

OntoQA Ranking - 1

OntoQA Ranking - 2

OntoQA Results for "Paper" with metric weights biased towards larger schema size

OntoQA vs. Users

Ontology	OntoQA Rank	Average User Rank	
Ι	2	9	
II	5	1	
III	6	5	
IV	1	6	
V	8	8	
VI	4	4	
VII	7	2	
VIII	3	7	
IX	9	3	

Pearson's Correlation Coefficient = 0.80

Comparison to Other Approaches

Approach	User Involvement	Ontologies	Schema/KB
[1]	High	Entered	Schema
[2]	High	Entered	Schema
[3]	High	Entered	Schema + KB
[4]	Low	Entered	Schema
[5]	High	Entered	Schema
[6]	Low	Crawled	Schema
[7]	Low	Crawled	Schema
[8]	Low	Entered	Schema
[9]	Low	Entered	Schema
OntoQA	Low	Enter/Crawl	Schema + KB

Possible Enhancements

- Enable the user to specify an ontology library (e.g. OBO) to limit the search in ontologies that exist in that specific library.
- Use BRAHMS instead of Sesame as a data store since BRAHMS is more efficient in handling large ontologies that are common in bioinformatics.

References

- 1. Plessers P. and De Troyer O. Ontology Change Detection Using a Version Log. In Proceedings of the 4th ISWC, 2005.
- 2. Haase P., van Harmelen F., Huang Z., Stuckenschmidt H., and Sure Y. A framework for handling inconsistency in changing ontologies. In Proceedings of ISWC2005, 2005.
- 3. Arpinar, I.B., Giriloganathan, K., and Aleman-Meza, B Ontology Quality by Detection of Conflicts in Metadata. In Proceedings of the 4th International EON Workshop. May 22nd, 2006.
- 4. Parsia B., Sirin E. and Kalyanpur A. Debugging OWL Ontologies. Proceedings of WWW 2005, May 10-14, 2005, Chiba, Japan.
- 5. Lozano-Tello A. and Gomez-Perez A. ONTOMETRIC: a method to choose the appropriate ontology. Journal of Database Management 2004.
- 6. Supekar K., Patel C. and Lee Y. Characterizing Quality of Knowledge on Semantic Web. Proceedings of AAAI FLAIRS, May 17-19, 2004, Miami Beach, Florida.
- 7. Alani H., Brewster C. and Shadbolt N. Ranking Ontologies with AKTiveRank. 5th International Semantic Web Conference. November, 5-9, 2006.
- Corcho O., G?mez-Pérez A., Gonz?lez-Cabero R., and Su?rez-Figueroa M.C. ODEval: a Tool for Evaluating RDF(S), DAML+OIL, and OWL Concept Taxonomies. Proceedings of the 1st IFIP AIAI Conference. Toulouse, France.
- 9. Guarino N. and Welty C. Evaluating Ontological Decisions with OntoClean. Communications of the ACM, 45(2) 2002, pp. 61-65

Thank you

