OQUARE

A SQUaRE-based Quality Evaluation Framework for Ontologies

Astrid Duque-Ramos Jesualdo Tomás Fernández-Breis Robert Stevens Nathalie Aussenac-Gilles

Ontology Summit 2013: Ontology Evaluation Across the Ontology Lifecycle

January, 31th, 2013

SQuaRE: Standard for software product Quality Requirements and Evaluation (ISO 25000)

- Comprehensive specification and evaluation model
- Common language for specifying user requirements
- It is based on observation
- It makes quality evaluation reproducible

INTRODUCTION SQuaRE

	ISO/IEC 25001n Quality Model	s. STVDIO
ISO/IEC 25003n Quality Requirements	ISO/IEC 25000n Product Quality General division	ISO/IEC 25004n Quality Evaluation
	ISO/IEC 25002n Quality Metrics	

- Adapting SQuaRE to ontology evaluation
 - Identifying strengths and flaws of the ontologies
 - Supporting users and developers in making informed decisions

OQUARE Outline of Quality Model and Quality Metrics

UNIVERSIDAD DE MURCIA

Quality Model

Quality Metrics

OQUARE Quality Model

UNIVERSIDAD DE MURCIA

Detailed information: <u>http://miuras.inf.um.es/evaluation/oquare</u>

Origin of the quality metrics

- Adaptation from software metrics
 - Coupling between objects
 - Weighted method count
- Reuse of ontology metrics
 - Cohesion (Yao, Orme, and Etzkorn (2005))
 - Metrics from Tartir and Arpinar (2007)

UNIVERSIDAD D

UNIVERSIDAD DE MURCIA

- Notation
 - C1;C2; ...Cn: Classes in the ontology.
 - R_{C1};R_{C2}; ...R_{Ck}: Relationships of each class Ci.
 - P_{C1}; P_{C2}; ...P_{C2}: Properties of each class Ci.
 - I_{C1}; I_{C2}; ...I_{Cm}: Individuals of each class Ci.
 - Sup_{C1};Sup_{C2}, ...,Sup_{Cm},: Direct superclasses of a given class C.
 - Thing: Root class of the ontology.

Some adapted software metrics

Coupling Between Objects: $CBOnto = \sum |Sup_{Ci}| / \sum (|C_i| - |R_{Thing}|)$

Depth of Inheritance Tree: $DITOnto = Max \sum |D_{Ci}|$

Weighted Method Count: WMCOnto = $\left(\sum |R_{Ci}| + \sum |R_{Ci}|\right) / \sum |C_i|$

Number of Ancestor Classes: $NACOnto = \sum |Sup_{leafi}| / \sum |C(leaf)_i|$

UNIVERSIDAD DE MURCIA

Some reused ontology metrics

Attributes Richness: $AROnto = \sum |Att_{Ci}| / \sum |C_i|$

Relationships per class: *INROnto* = $\sum |R_{Ci}| / \sum |C_i|$

Number of properties: *NOMOnto* = $\left(\sum |P_{Ci}|\right) / \sum |C_i|$

Annotations Richness: $AnOnto = \left(\sum |An_{Ci}|\right) / \sum |C_i|$

- SQuaRE scores are in the range [1,5]
 - 1: not acceptable
 - 3: minimally acceptable
 - 5: exceeds the requirements
- Values of the metrics are mapped onto [1,5]
- Higher values do not always mean higher quality

UNIVERSIDAD D

UNIVERSIDAD DE MURCIA

Definition of the value mappings following best practices

Scale / Metric	1	2	3	4	5	(D10)
LCOMOnto	> 8	(6-8]	(4,6]	(2, 4]	<=2	3.6
WMCOnto	> 15	(11,15]	(8,11]	(5,8]	<=5	2
DITOnto	> 8	(6-8]	(4,6]	(2, 4]	[1,2]	
NACOnto	> 12	(8-12]	(6,8]	(3,6]	[1,3]	i ala
RROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%	M
AROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%	Fellie
INROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%	

- Cell type ontology: Two versions of CTO
- Units of Measurements: Ten Unit of Measurements Ontologies

Main results of each case study available at http://miuras.inf.um.es/evaluation/oquare

CASE STUDIES Manual evaluation of Unit Masurement

UNIVERSIDAD DE MURCIA

CASE STUDIES Automatic evaluation of Unit Masurement

CASE STUDIES Summary of the results

- Similar scores in both evaluations
- Findings about the ontologies
 - Highest score has been obtained for the structural and functional adequacy characteristics
 - Lowest score for reliability and operability.
 - ontologies require more effort to be used, understood and learnt

EVALUATION OF THE FRAMEWORK

- Preliminary assessment on OQuaRE:
 - Positive and negative aspects of the current version of OQuaRE
 - Completeness and usefulness of the quality metrics
 - Independent experts on biomedical ontologies:
 Stefan Schulz, Michel Dumontier, Mikel Egaña

UNIVERSIDAD DE MURCIA

- Step 1) Manual evaluation
 - Difficulty in understanding some subcharacteristics
 - Need for knowing the intended context of use
- Step 2) Manual evaluation with the support of OQuaRE metrics
 - Difficulty in understanding some metrics because of their definition in an OWL-independent way.
 - Metrics provided additional information to the experts contributing to a more precise understanding of the subcharacteristics.

EVALUATION OF THE FRAMEWORK Findings about the quality model

UNIVERSIDAD DE MURCIA

Subcharacteristic Vs Appropriateness-Difficulty

- High Aprop and Low Diff.
- High Aprop and Media Diff.
- High Aprop and High Diff.
- Media Aprop and Low Diff.
- Media Aprop and Media Diff.
- Media Aprop and High Diff.
- Low Aprop and Low Diff.
- Low Aprop and Media Diff.
- Low Aprop and High Diff.

EVALUATION OF THE FRAMEWORK Recommendations from the experts

- To define new metrics or new associations between metrics and subcharacteristics
- To have a limited number of metrics per subcharacteristic.
- To distinguish between context dependent and independent metrics
- To divide the structural accuracy into subcharacteristics.

•Agreement on subcharacteristics and metrics

Agreement on interpretation of values of metrics

Need for metrics for some quality subcharacteristics

- Contributions are welcome
 - <u>http://miuras.inf.um.es/oquarewiki/</u>
 - <u>https://docs.google.com/spreadsheet/viewform?fromEmail=true&formkey=dFlsZGpkbjl</u> <u>HaEk1d0l0RU1oYzVwN0E6MQ</u>

- Adjusting OQuaRE by increasing interaction with the ontology engineering community
- Definition of the quality requirements module for determining potential contexts of use
- Finishing the development of an online tool for ontology evaluation based on OQuaRE

OQUARE

A SQUaRE-based Quality Evaluation Framework for Ontologies

Astrid Duque-Ramos astrid.duque@um.es Jesualdo Tomás Fernández-Breis jfernand@um.es Robert Stevens robert.stevens@manchester.ac.uk Nathalie Aussenac-Gilles aussenac@irit.fr

Ontology Summit 2013: Ontology Evaluation Across the Ontology Lifecycle

January, 31th, 2013