System requirements and the unobtrusive ontology

Jennifer Williams
HIGHFLEET, Inc
Ontology Summit 2012
Panel Discussion, X-Track A1
“Ontology Quality and Large-Scale Systems”
Context for this talk

- “Implementing Ontology **Quality Measures in Big Systems Engineering**”
- “[assuring] ontology “quality” in its systems engineering sense: the degree to which an ontology meets the requirements of a particular systems application”
- Our approach: the *ontology* doesn’t, directly.
- The ontology constrains & defines the artifacts that do meet such requirements.
The Knowledge System

- Federation effort for a large-scale analytic application
- Modeling team involved in
 - System requirements analysis
 - Build/maintain Reference Ontology
 - Build/maintain system interface definitions
 - Scenario models
 - Scenario model + RO + interface definitions = Implemented Model
Implementation Model

Reference Ontology

Scenario Model

Implemented Model

Interface Definitions

Mappings & extensions

Component requirements

Functionality demands

Semantic constraints

Implementation constraints

Jennifer Williams (HIGHFLEET) - Ontology Summit 2012 XTrack-A1
“How” is not today’s topic

- Scenario Model
 - Mappings & extensions
 - Component requirements
 - ECLIF axioms
 - Valid classes
 - Valid relations
 - Valid triples
 - Subsumption hierarchy
 - UI display names
 - UI querying shortcuts
 - Source data mappings
 - Reasoning engine (XKS)
 - Functionality demands
 - ECLIF axioms
 - NL text
 - Valid classes
 - Valid relations
 - Valid triples
 - Subsumption hierarchy
 - UI display names
 - UI querying shortcuts
 - Source data mappings
 - XML-format config files
Lessons learned

- Use model early for user acceptance
- Modeling team responsibility for data semantics throughout system
- “Throw the model over the wall” = fail
- Provide configs, not physical models
- Interface definitions support testing
Lessons not yet learned (TBD)

- Process not quite as smooth as discussed
- QA gaps (consistency OK, completeness not guaranteed)
- Thorough understanding of system operation needed at parts of the process