bigdata®

Managing Scale in Ontological Systems

SYSTAP Company Overview

Overview

- LLC, Small Business, Founded 2006
- 100% Employee Owned, 2 Principals
- 35 Years Combined Experience, 16 Years With Semantic Web Technologies

Customers & Use Cases

• Intelligence Community

 Federation and semantic alignment at scale to facilitate rapid threat detection and analysis

Telecommunications

Horizontal data integration across enterprise services

Health Care

Data integration and analytics

Network Storage

Embedded device monitoring and root cause analysis

Collaboration and Knowledge Portals

Bioinformatics, manufacturing, NGOs, etc.

OEM Resellers

Corporate Services & Product Offering

Semantic Web Consulting Services

- System vision, design, and architecture
- Information architecture development
- Ontology development and inference planning
- Relational data mapping and migration
- Rapid prototyping

Bigdata[®], an open-source, horizontallyscaled high-performance RDF database

- Dual licensing (GPL, commercial)
- Infrastructure planning
- Technology identification and assessment
- Benchmarking and performance tuning
- Feature development
- Training & Support

What is "big data?"

- Big data is a way of thinking about and processing massive data.
 - Petabyte scale
 - Distributed processing
 - Commodity hardware
 - Open source

Different kinds of "big" systems

- Row stores
- Map / reduce
- Main memory graph processing
 - Boutique super computers, Cray XMT, etc.
- Parallel (clustered) databases
 - The Bigdata[®] platform fits into this category.

Timeliness vs. Completeness

- Rapidly exploit fusion of data sources.
 - Exploitation cycle can be just a few hours.
- High level reasoning over curated information
 - Careful, detailed, and length period of ontology development;
 - In depth reconciliation of data sources and their semantics.
 - Exploitation cycle can be six months to several years.

Expressivity vs. Scale

- Don't be seduced by expressivity
- Computationally expensive
- High expressivity not easily partitioned
- A little ontology goes a long way
- Avoid constructs that tell you things you probably already know (e.g. domain/range)

The killer "big data" app

- Clouds + "Open" Data = Big Data Integration
- Critical advantages
 - Fast integration cycle
 - Open standards
 - Integrate heterogeneous data, linked data, structured data, and data at rest.
 - Opportunistic exploitation of data, including data which can not be integrated quickly enough today to derive its business value.
 - Maintain fine-grained provenance of federated data.

Information Architecture

Provenance

- Bigdata® has a dedicated mode for datum level provenance. Fast, inline representation with SPARQL query and only 20% of the foot print on the disk.
- Modeling relationships
 - Provenance model allows dual modeling of relationships as entities.
- Benefits of micro ontologies
 - Separate out system architecture, application architecture, and domain architecture.

CAP Theorem

- Distributed systems can have at most 2 out of 3:
 - Consistency
 - Availability
 - Partition Tolerance
- Bigdata sacrifices Consistency
 - Updates are shard-wise ACID
 - Application level protocols can provide globally consistent updates

Cloud Architecture

- Hybrid shared nothing / shared disk architecture
 - Compute cluster
 - Spin compute nodes up or down as required
 - plus
 - Managed cloud storage layer
 - S3, openstack, parallel file system, etc

bigdata

Flexible
Reliable
Affordable
Web-scale computing.