bigdata®
Managing Scale in Ontological Systems
SYSTAP Company Overview

Overview
- LLC, Small Business, Founded 2006
- 100% Employee Owned, 2 Principals
- 35 Years Combined Experience, 16 Years With Semantic Web Technologies

Customers & Use Cases
- **Intelligence Community**
 - Federation and semantic alignment at scale to facilitate rapid threat detection and analysis
- **Telecommunications**
 - Horizontal data integration across enterprise services
- **Health Care**
 - Data integration and analytics
- **Network Storage**
 - Embedded device monitoring and root cause analysis
- **Collaboration and Knowledge Portals**
 - Bioinformatics, manufacturing, NGOs, etc.
- **OEM Resellers**

Corporate Services & Product Offering
- **Semantic Web Consulting Services**
 - System vision, design, and architecture
 - Information architecture development
 - Ontology development and inference planning
 - Relational data mapping and migration
 - Rapid prototyping
- **Bigdata®, an open-source, horizontally-scaled high-performance RDF database**
 - Dual licensing (GPL, commercial)
 - Infrastructure planning
 - Technology identification and assessment
 - Benchmarking and performance tuning
 - Feature development
 - Training & Support
What is “big data?”

• Big data is a way of thinking about and processing massive data.
 – Petabyte scale
 – Distributed processing
 – Commodity hardware
 – Open source
Different kinds of “big” systems

- Row stores
- Map / reduce
- Main memory graph processing
 - Boutique super computers, Cray XMT, etc.
- Parallel (clustered) databases
 - The Bigdata® platform fits into this category.
Timeliness vs. Completeness

• Rapidly exploit fusion of data sources.
 – Exploitation cycle can be just a few hours.

• High level reasoning over curated information
 – Careful, detailed, and length period of ontology development;
 – In depth reconciliation of data sources and their semantics.
 – Exploitation cycle can be six months to several years.
Expressivity vs. Scale

• Don’t be seduced by expressivity
• Computationally expensive
• High expressivity not easily partitioned
• A little ontology goes a long way
• Avoid constructs that tell you things you probably already know (e.g. domain/range)
The killer “big data” app

- Clouds + “Open” Data = Big Data Integration
- Critical advantages
 - *Fast* integration cycle
 - Open standards
 - Integrate heterogeneous data, linked data, structured data, and data at rest.
 - Opportunistic exploitation of data, including data which can not be integrated quickly enough today to derive its business value.
 - Maintain fine-grained provenance of federated data.
Information Architecture

• Provenance
 – Bigdata® has a dedicated mode for datum level provenance. Fast, inline representation with SPARQL query and only 20% of the footprint on the disk.

• Modeling relationships
 – Provenance model allows dual modeling of relationships as entities.

• Benefits of micro ontologies
 – Separate out system architecture, application architecture, and domain architecture.
CAP Theorem

• Distributed systems can have at most 2 out of 3:
 – Consistency
 – Availability
 – Partition Tolerance

• Bigdata sacrifices *Consistency*
 – Updates are *shard-wise ACID*
 – Application level protocols can provide globally consistent updates
Cloud Architecture

- Hybrid shared nothing / shared disk architecture
 - Compute cluster
 - Spin compute nodes up or down as required
 - plus
 - Managed cloud storage layer
 - S3, openstack, parallel file system, etc
Flexible
Reliable
Affordable
Web-scale computing.