Big Data that might benefit from ontology technology, but why this usually fails

Barry Smith
National Center for Ontological Research
The strategy of annotation

Databases describe data using multiple heterogeneous labels
If we can *annotate* (tag) these labels using terms from common controlled vocabularies, then a virtual arms-length integration can be achieved, providing
• immediate benefits for search and retrieval
• a starting point for the creation of net-centric reference data
• potential longer term benefits for reasoning with no need to modify existing systems, code or data

http://ontology.buffalo.edu/bio/LinkSuite.pdf
String searches yield partial results, rest on manual effort and on familiarity with existing database contents.

Ontologies facilitate grouping of annotations:

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>20</td>
</tr>
<tr>
<td>hindbrain</td>
<td>15</td>
</tr>
<tr>
<td>rhombomere</td>
<td>10</td>
</tr>
</tbody>
</table>

Query ‘brain’ without ontology: 20
Query ‘brain’ with ontology: 45
Examples of where this method works

• Reference Genome Annotation Project

• Human resources data in large organizations
 http://www.youtube.com/watch?v=OzW3Gc_yA9A

• Military intelligence data

Other potential areas of application:

• Crime
• Insurance

• Public health
• Finance
But normally the method does not work

Semantic technology (OWL, ...) seeks to break down data silos

Unfortunately it is now so easy to create ontologies that myriad incompatible ontologies are being created in *ad hoc* ways leading to the creation of new, semantic silos

The Semantic Web framework as currently conceived and governed by the W3C (modeled on html) yields minimal standardization

The more semantic technology is successful, they more we fail to achieve our goals
Reasons for this effect

• Just as it’s easier to build a new database, so it’s easier to build a new ontology for each new project
• You will not get paid for reusing existing ontologies (Let a million ontologies bloom)
• There are no ‘good’ ontologies, anyway (just arbitrary choices of terms and relations …)
• Information technology (hardware) changes constantly, not worth the effort of getting things right
How to do it right?

• how create an incremental, evolutionary process, where what is good survives, and what is bad fails
• create a scenario in which people will find it profitable to reuse ontologies, terminologies and coding systems which have been tried and tested
• silo effects will be avoided and results of investment in Semantic Technology will cumulate effectively
Biomedical ontology in PubMed

Number of articles in PubMed/MEDLINE on Ontology vs. Controlled vocabulary

- Ontology or ontologies
- Both
- Controlled vocabulary [excluding DSM]

(*) As of 2008/02/20
(Partial coverage for 2007, due to a slight lag in the indexing process)

[Bodenreider, YBMI 2008]
By far the most successful: GO (Gene Ontology)
GO provides a controlled vocabulary of terms for use in annotating (tagging) biological data

- multi-species, multi-disciplinary, open source
- built and maintained by domain experts
- contributing to the cumulativeness of scientific results obtained by distinct research communities
- natural language and logical definitions for all terms to support consistent human application and computational exploitation
- rigorous governance process
- feedback loop connects users to editors
How to do it right

• ontologies should mimic the methodology used by the GO (following the principles of the OBO Foundry: http://obofoundry.org)

• ontologies in the same field should be developed in coordinated fashion to ensure that there is exactly one ontology for each subdomain

• ontologies should be developed incrementally in a way that builds on successful user testing at every stage