

Dr. Leo Obrst MITRE Information Semantics Iobrst@mitre.org 2 February 2012

Semantic Integration Implies Semantic Composition

Dimensions of Interoperability & Integration

Semantic Interoperability, Integration Definition

- To *interoperate* is to participate in a *common purpose*
 - Operation sets the context
 - Purpose is the intention, the end to which activity is directed
- Semantics is fundamentally interpretation
 - Within a particular context
 - From a particular point of view
- Semantic Interoperability/Integration is fundamentally driven by *communication of purpose*
 - Participants determined by interpreting capacity to meet operational objectives
 - Service obligations and responsibilities explicitly contracted

Enabling Semantic Interoperability

- Semantic Interoperability is enabled through:
 - Establishing base semantic representation via ontologies (class level) and their knowledge bases (instance level)
 - Defining semantic mappings & transformations among ontologies (and treating these mappings as individual theories just like ontologies)
 - Defining algorithms that can determine semantic similarity and employing their output in a semantic mapping facility that uses ontologies
- The use of ontologies & semantic mapping software can reduce the loss of semantics (meaning) in information exchange among heterogeneous applications, such as:
 - Web Services
 - E-Commerce, E-Business
 - Enterprise architectures, infrastructures, and applications
 - Complex systems-of-systems
 - Integrated collective intelligence

Semantic Interoperability, Integration: Multiple Semantics

- Multiple contexts, views, application & user perspectives
- Multiple levels of precision, specification, definiteness required
- Multiple levels of semantic model verisimilitude, fidelity, granularity, dynamicity
- Multiple kinds of semantic mappings, transformations needed:
 - Entities, Relations, Properties, Ontologies, Model Modules, Namespaces, Meta-Levels, Facets (i.e., properties of properties), Units of Measure, Conversions, Theories, Interpretations, etc.
- Upper & Middle Ontologies are important
 - To be able to interrelate domain ontologies

Electronic Commerce Example: One Company, Many Systems

Now Assume Each Company Has Separate Enterprise Semantics, Multiply by the Number of Companies, & Have Them Interoperate and Preserve Semantics: Many Systems!

Try doing this without Ontologies! You can, but it's a Nightmare, and it COSTS: Now & Later!

Mainstream Systems Engineering and Information Technology cannot adequately address these issues

- Service-Oriented Architecture, database technology (including Big Data), programming technology (including OO, genetic programming, "swarm" agents), parallel distributed technologies (Cloud, Grid) cannot address
- Ontology can address these issues:
 - Formal ontological analysis
 - Theory of Parts and Wholes
 - Theory of Essence and Identity
 - Theory of Dependence
 - Theory of Qualities
 - Theory of Composition and Constitution
 - Theory of Function (teleology)
 - Formal Pragmatic Intent and Use
 - Theory of Social/Organizational Roles
 - Relations between Semantics and Ontology for Systems
 - Theory of Dynamics: Change and Time

Conclusion

- Ontology can contribute much to Systems Engineering and Engineered Systems
- Semantic complexity will only increase: Ontology is the

lever

