

Ontology Engineer Requirements
Focus on what ontologists need to DO and KNOW

Dr. Michael Uschold
Independent Consultant

LinkedIn Profile

http://www.linkedin.com/in/michaeluschold%20

Customers and Stakeholders

Ability to interview customers and stakeholders
● Determine ontology requirements
● Determine whether an ontology-based solution is

appropriate
● Play devil's advocate, if they insist they need an

ontology but cannot articulate why, then tell them
they don't need one.

Competency Questions

Ability to
● Formulate ontology requirements as

competency questions
● Informal competency questions first
● Include formal vocabulary
● Formal competency questions
● Drives the ontology engineering process

Avoid Terminology Wars
● Know how to avoid terminology wars for

ambiguous terms like “process” “product” or
even “architecture”.
RECIPE:

1. Prohibit use of the term in question, make up
terms like foo1, foo2.

2. Gather all the different definitions:
– foo1: agreed definition of meaning 1
– foo2: agreed definition of meaning 2
– ...
– fooN: agreed definition of meaning N

RECIPE: Avoid Terminology Wars

3. Identify common elements of each definition
4. Agree on one or more meanings that you want

to have terms for
5. Decide on what the terms will be
6. Fight about the terms only after you know

exactly what you are talking about.

Languages and Tools

Be familiar with wide range of languages and
tools

● OWL, RDF, FOL, CL, Flogic
● Inference engines: Pellet, Fact++, Ontobroker,

KAON2, ...
● Semantic computing infrastructure

● Triple stores
● Open source platforms

● See: www.mkbergman.com
Sweet Compendium of Ontology Building Tools

http://www.mkbergman.com/

Languages and Tools
● Identify candidate languages and tools that can

meet customer requirements
● Know key criteria informing a choice

● performance, conformance to standards,
expressivity, maintainability

● Evaluate languages/tools according to criteria
● pros/cons as apply to customer's context

● Make recommendation taking tradeoffs into
account

Comprehensive Tools
● Altova SemanticWorks is a visual RDF and OWL editor

that auto-generates RDF/XML or nTriples
● Amine is a rather comprehensive, open source platform

for the development of intelligent and multi-agent systems
written in Java.

● The Apelon DTS (Distributed Terminology System) is
an integrated set of open source components that provides
comprehensive terminology services in distributed
application environments.

● DOME is a programmable XML editor which is being used
in a knowledge extraction role to transform Web pages into
RDF, and available as Eclipse plug-ins.

Comprehensive Tools
● FlexViz is a Flex-based, Protégé-like client-side ontology

creation, management and viewing tool; very impressive.
● Knoodl facilitates community-oriented development of

OWL based ontologies and RDF knowledge bases. It also
serves as a semantic technology platform, offering a Java
service-based interface or a SPARQL-based interface so
that communities can build their own semantic applications
using their ontologies and knowledgebases.

● ontopia is a relative complete suite of tools for building,
maintaining, and deploying Topic Maps-based
applications; open source, and written in Java.

Comprehensive Tools

● Protégé is a free, open source visual ontology editor and
knowledge-base framework.

● TopBraid Composer is an enterprise-class modeling
environment for developing Semantic Web ontologies and
building semantic applications. Fully compliant with W3C
standards,

Other Tools
● Initial ontology development tools

● concept map tools
● ontology learning tools
● importing from other formats, spreadsheets,

databases etc.
● Ontology Editors
● Ontology Mapping
● Ontology Visualization and Analysis tools

Importance of names
● Understand and apply good practice for naming

ontologies, classes, relationships and instances
● URIs and versioning a particular problem

● avoid proliferation of multiple URIs for exactly the
same thing

● avoid changing the meaning of an existing URI it is
has been publicly available / sanctioned

● Example: SKOS experience
● See: A URI Crisis

http://ontolog.cim3.net/file/resource/pic/iswc2008_Karlsruhe_Oct-2008/images/P1010167.jpg

SKOS URI Challenge
● SKOS dilemma, minting URIs for new version

● There are no guidelines to work from
● Change semantics and keep URI same?
● Same semantics, mint a new URI?
● One ontology, two namespaces?

● URIs are overloaded
● organization, dates, version number,
● file structure, meaning of concept

● Versioning not solved

Modular Design
● Know how to design the architecture for an

ontology, identifying different modules and how
they relate

● Known how to find and reuse existing
ontologies rather than reinvent the wheeel

● Know when to create a separate ontology
module that can be reused vs. creating special
purpose components

Design Patterns
● Be familiar with ontology design patterns

● Catalogue: http://www.ontologydesignpatterns.org
● Use them whenever possible
● Create new ones and publish to community

http://www.ontologydesignpatterns.org/

Standards
● Be familiar with all relevant standards
● Know when and how to apply them

Resources
● Know how to find and use resources
● Books
● Ontology portals, academic and commercial
● Communities of practice

FUN
● KNOW how to have fun being an ontology

professional
● DO have fun!

