OOR in the Classroom An Experience Report

Ken Baclawski Northeastern University

OOR Promotion

- Techniques for promoting OOR
 - Personal contacts (bottom-up)
 - Mandates (top-down)
 - User-friendly tools and GUIs (lower the bar)
 - Classroom materials (raise awareness)
- This is a report on developing classroom materials
 - Provides useful feedback as a side-effect

Typical Course Assignments

- Course topic: component software with SOA
- UML model for the OOR as a web service
- XSLT transformations for OOR results
- Develop marshalling and basic semantics
- Develop a rudimentary OOR
 - Initially RESTful, later SOAP based
 - Federate OOR instances
 - Compose with other services

Issue: Storage Model

- Current storage model
 - Defined implicitly by program
 - Language dependent
- Better storage model
 - Formally defined by an ontology
 - Additional benefits
 - Better understanding and documentation of OOR
 - Important for federation and interoperability

Issue: Identifiers

- Currently identifiers are integers
 - Not clear how they are generated
 - Multiple codes/identifiers
- A standard for names/identifiers is needed
 - Essential for federated OOR instances
 - Useful for interoperability

Issue: Basic Semantics

- The most basic level of semantics is equality: when two entities are the same.
- Students are given the task of determining when two ontology labels (metadata only) are the same.
 - No formal definition so task is not well-defined
 - Equality of XML (infosets) is obviously not correct
 - Must separate fundamental attributes from incidental ones
- Formal semantics would resolve this issue

Issue: Marshalling

- Students develop serialization and deserialization using type mappings
 - Current approach
 - Procedural definition
 - Programming language dependent
 - Better approach
 - Formal specification of transformation
 - Unfortunately, ontologies are not designed for this

Issue: Service Specification

- Current model is RESTful
 - Informally defined
 - Request parameters are encoded in a URL
 - Result is encoded in XML
- Better model
 - Formal definition with ontologies
 - Request and result use RDF
 - Compatible with WSDL

Issue: Transformations

- OOR requires multiple representations for ontologies and metadata
- Two-way transformations are necessary
 - Invertibility would be ideal but usually impossible
 - Naïve transformations are usually unbounded
 - An attainable goal is stable transformations but these require annotations and not all languages can be extended to accommodate annotations.
- Students explore two-way transformations but this is a difficult research problem in general.

Future Issues

- Ontology configurations
- Situation semantics
- OOR component architecture