Toward an Integrated Surface and Subsurface Water Ontology

Boyan Brodaric, Torsten Hahmann

¹Geological Survey of Canada
²University of Toronto
Scientific and societal drivers

- **Integrating surface water and groundwater**

 Water budgets: reporting units are ‘surface water basin’ + ‘groundwater body’

 - Increase in regulations to develop water budgets
 - ~25% of Canadian rely on groundwater (StatsCan 2010)
Technologic drivers

- **SDI**: a promising approach to deliver data for water budgeting

 numerous distributed, heterogeneous data sources
 emerging, competing water data standards, e.g. ‘groundwater body’
Semantic heterogeneity

- what’s a ‘groundwater body’

 specific amount of **matter** or the **object** composed of the matter?

 - e.g. water body of the Ogallala aquifer is a timeless object but its water matter (slowly) changes over time

 - water quality issue: the matter travels, object is fixed

 - water quantity issue: the matter disappears (dry river), object persists

 fills a **void**?

 - water quantity and quality issue: size and connection of voids constrains quantity and flow

INSPIRE

 object or matter?

 no voids

GWML

 object

 object fills voids

- **use reference concepts for disambiguation**
Types of reference ontologies

- **science ontologies**: non-contextual focus

Foundational (general)
- matter
 - constitutes objects

Domain (essential)
- granite
 - fixed constitution
 - varying texture
 - can have cracks
- countertop granite
 - larger crystals
 - non-porous (no cracks)

Task/Application (contextual)
- physical object
 - constituted by matter
- water body
 - can be constituted by water
 - can be connected
 - can have human uses
- Spanish River
 - can be dry (no water)
 - may not connect
 - not navigable
- German River
 - has water
 - connected
 - navigable

(Matter constitutes objects)
Inland Water Ontologies... many

▪ **Surface Water Features**
 - lake vs pond, river vs stream? UK Ordinance Survey
 (Santos et al. 2005; Hart et al. 2007)

▪ **Measured Properties**
 - stream flow, level, arsenic, evapotranspiration: CUAHSI
 (Bermudez & Piasecki, 2003; Beran & Piasecki, 2009; Privesetev et al.)

▪ **Events and Processes**
 - floods, flow: ‘water falls but waterfall doesn’t’ (Galton & Mizoguchi, 2009)

▪ **Hydrogeology**
 - aquifer, groundwater body, well: SWEET
 (Tripathi & Babaie, 2008; Brodaric & Probst 2009)

▪ **Schema: Surface and Subsurface**
 - OGC WaterML, GWML, HydroFeatures; INSPIRE GE
Elements of essential hydro ontology

- **contrast concepts**: different natural situations for gw & sw
- **boundary concepts**: bridge between gw & sw, e.g. flow
- **common concepts**: shared container concepts for gw & sw

![Diagram showing elements of essential hydro ontology](image)
Essential common concepts

- container schema for water

Essential common concepts

- applied to surface water and groundwater

- container
- container
- matter
- object
- water flow
- void
- water body
- object
- water matter

Ontology for Groundwater and Surface Water
Brodaric, Ontology, 01 Nov 2012
DOLCE: boundary, shared, contrast concepts

- **perdurant**
 - process
 - water flow
 - amount of matter
 - rock matter
 - water matter
- **endurant**
 - physical object
 - water body
 - aquifer
 - feature
 - ground depression
 - river
- **quality**
- **volume**
- **has quality**
- **participation**
- **hosting**
- **flow**
- **matter**
- **container**
- **void**
- **body of ground**
- **surface water basin**
Voids

- **holes** (Casati & Varzi, 1994)
 - depressions, cavities, tunnels
 - formal logical theory (FOL)
 - **no gaps:** suitable for surface water but not groundwater
- **gaps** (Hahmann & Brodaric, 2012)
 depressions, cavities, tunnels
 formal logical theory (FOL)
 suitable for ontology of pores in rocks

- cavity
- depression
- tunnel
Voids

- voids: generalize holes and gaps

need containment relations with voids (‘inside a hole’)

\[(V9) \text{hosts-} h(x, y) \equiv \text{hosts-} v(x, y) \land ICon(x) \quad \text{(non-scattered host of a void)}\]

\[(\text{Hole-D}) \quad \text{Hole}(y) \equiv \exists x[\text{hosts-} h(x, y)] \quad \text{(hole has a non-scattered host)}\]

\[(V10) \text{hosts-} g(x, y) \equiv \text{hosts-} v(x, y) \land \neg ICon(x) \quad \text{(scattered host of a void)}\]

\[(\text{Gap-D}) \quad \text{Gap}(y) \equiv \exists x[\text{hosts-} g(x, y)] \quad \text{(gap has a scattered host)}\]

\[(V-T2) \quad V_S(x) \leftrightarrow \text{Gap}(x) \lor \text{Hole}(x) \quad \text{(gap and hole exhaustive classes of simple voids)}\]
Tiered hydro ontology

- **perdurant**
 - process
 - water flow
- **endurant**
 - amount of matter
 - rock matter
 - water matter
 - physical object
 - water body
 - aquifer
 - feature
 - ground depression
 - void
- **quality**
- **volume**
- **has quality**
- **participation**
- **contains**
- **hosting**
- **inside**
- **Contextual**
 - INSPIRE gw body
 - GWML gw body
 - surface water basin
 - Spanish river
 - German river
- **Foundational**
 - body of ground
 - river
 - hole
 - gap
Conclusions

- progress on reference hydro ontology that integrates surface and groundwater entities
- includes expanded ontology of voids and some topological relations
- foundational and essential domain ontologies can help:
 - disambiguate conceptual differences in emerging SDI standards
 - inform SDI data standards design

Thank you!