The Ontology Definition Metamodel
Motivation & Brief Introduction

Elisa Kendall
Sandpiper Software

January 4, 2007
Agenda

∞ Brief Review of OMG MDA

∞ Semantics & MDA - Complementary Technologies

∞ The Ontology Definition Metamodel (ODM)
 - What it is
 - RDF & OWL Metamodel Highlights
 - Common Logic Metamodel Highlights
 - Developing ontologies in UML - the UML profile for RDF & OWL

∞ Relationship to other OMG & W3C standards

∞ Relationship to metadata standards

∞ Next steps, implication for emerging MDA architectures
 - Semantics for Service Oriented Architectures
 - InferenceWeb - semantics supporting registration, explanations & trust for semantically-enabled services
Model Driven Architecture® (MDA®)

- Insulates business applications from technology evolution, for
 - Increased portability and platform independence
 - Cross-platform interoperability
 - Domain-relevant specificity

- Consists of standards and best practices across a range of software engineering disciplines
 - The Unified Modeling Language (UML®)
 - The Meta-Object Facility (MOF™)
 - The Common Warehouse Metamodell (CWM™)

- MOF defines the metadata architecture for MDA
 - Database schema, UML and ER models, business and manufacturing process models, business rules, API definitions, configuration and deployment descriptors, etc.
 - Supports automation of physical management and integration of enterprise metadata
 - MOF models of metadata are called *metamodels*
MOF-Based Metadata Management

- MOF tools use metamodels to generate code that manages metadata, as XML documents, CORBA objects, Java objects.

- Generated code includes access mechanisms, APIs to:
 - Read and manipulate
 - Serialize/transform
 - Abstract the details based on access patterns.

- Related standards:
 - XML Metadata Interchange (XMI®)
 - CORBA Metadata Interface (CMI)
 - Java Metadata Interface (JMI)

- Metamodels are defined for:
 - Relational and hierarchical database modeling
 - Online analytical processing (OLAP)
 - Business process definition, business rules specification
 - XML, UML, and CORBA IDL
MDA from the KR Perspective

- Ell solutions rely on strict adherence to agreements based on common information models that take weeks or months to build.
- Modifications to the interchange agreements are costly and time consuming.
- Today, the analysis and reasoning required to align multiple parties’ information models has to be done by people.
- Machines display only syntactic information models and informal text describing the semantics of the models.
- Without formal semantics, machines cannot aid the alignment process.
- Translations from each party’s syntactic format to the agreed-upon common format have to be hand-coded by programmers.
- MOF® and MDA® provide the basis for automating the syntactic transformations.
MOF and KR Together

∞ MOF technology streamlines the mechanics of managing models as XML documents, Java objects, CORBA objects

∞ Knowledge Representation supports reasoning about resources
 - Supports semantic alignment among differing vocabularies and nomenclatures
 - Enables consistency checking and model validation, business rule analysis
 - Allows us to ask questions over multiple resources that we could not answer previously
 - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
 • Detect inconsistent financial transactions
 • Support business policy enforcement
 • Facilitate next generation network management and security applications while integrating with existing RDBMS and OLAP data stores

∞ MOF provides no help with reasoning

∞ KR is not focused on the mechanics of managing models or metadata

∞ Complementary technologies - despite some overlap
Level Setting

An ontology specifies a rich description of the

∞ Terminology, concepts, nomenclature
∞ Properties explicitly defining concepts
∞ Relations among concepts (hierarchical and lattice)
∞ Rules distinguishing concepts, refining definitions and relations (constraints, restrictions, regular expressions)

relevant to a particular domain or area of interest.

Based On Aaaï '99 Ontologies Panel - Mcguinness, Welty, Ushold, Gruninger, Lehmann
Classification techniques are as diverse as conceptual models; and generally include understanding:

- Methodology
- Target Usage
- Level of Expressivity
- Level of Complexity
- Reliability / Level of Authoritativeness
- Relevance
- Amount of Automation
- Metrics Captured and/or Available
Towards Model Driven Ontology Development - ODM

- Five EMOF platform independent metamodels (PIMs), four normative
- Mappings (MOF QVT)
- UML2 Profiles
 - RDFS & OWL
 - TM
- Collateral
 - XMI
 - Java APIs
 - Proof-of-concepts
- Conformance
 - RDFS & OWL
 - Multiple Options
 - TM, CL Optional
 - Informative Mappings
Resource Description Framework (RDF) Metamodel Overview

∞ RDFBase - primary package
 - Reflects basic abstract syntax from RDF Concepts
 - Minimal implementation requirements, e.g., for RDF triple/quad store

∞ RDFS - adds vocabulary related to RDF Schema, few additional RDF features

∞ RDFWeb - fits the model to the Web via document model, required for RDF/XML syntax, among others
RDFBase Package - Statements

- Supports named graphs (e.g., per SPARQL), reification, blank node identifiers, essentially RDF basics
- Limited coverage to RDF Concepts document rather than along namespace boundaries, which didn’t work from a UML perspective
- Promotion of the blank node identifier to RDFSResource addresses MOF multiple classification, non-normative work-around
RDFS assists us in “getting around” MOF multiple classification limitations through rdf:type
Note that rdf:domain and rdf:range are global properties - limiting their usage enhances reusability of ontology components
RDFWeb Package - Documents
Web Ontology Language (OWL) Metamodel Overview

- OWL metamodel components include:
 - OWLBase, covering all common abstract syntax & constraints
 - OWL DL - containing OWL DL constraints
 - OWLFull - containing OWL Full constraints

- Non-normative models for OWL, including changes to property representation & intersection classes for OWL Full, to address MOF multiple classification, are posted to the OMG web site
OWLBase Package - Restrictions

- **AllValuesFromClass**
 - 0..1
 - 0..*
 - +OWLallValuesFromClass
 - 0..1
 - 0..*
 - +restrictionClass
- **AllValuesFromDataRange**
 - 0..1
 - 0..*
 - +OWLallValuesFromDataRange
 - 0..1
 - 0..*
 - +restrictionClass
- **SomeValuesFromClass**
 - 0..1
 - 0..*
 - +OWLsomeValuesFromClass
 - 0..1
 - 0..*
 - +restrictionClass
- **SomeValuesFromDataRange**
 - 0..1
 - 0..*
 - +OWLsomeValuesFromDataRange
 - 0..1
 - 0..*
 - +restrictionClass
- **Cardinality**
 - 1
 - 0..*
 - +OWLcardinality
 - 1
 - 0..*
 - +cardinalityRestriction
- **MaxCardinality**
 - 0..1
 - 0..*
 - +OWLmaxCardinality
 - 0..1
 - 0..*
 - +maxCardinalityRestriction
- **MinCardinality**
 - 0..1
 - 0..*
 - +OWLminCardinality
 - 0..1
 - 0..*
 - +minCardinalityRestriction

OWLClass

- **RDFProperty**
 (from RDFBase)

- **TypedLiteral**
 (from RDFBase)

RestrictionOnProperty

- **HasValueRestriction**
 - 0..1
 - 0..*
 - +OWLhasIndividualValue
 - 0..1
 - 0..*
 - +restrictionClass
- **HasLiteralValue**
 - 0..1
 - 0..*
 - +OWLhasLiteralValue
 - 0..1
 - 0..*
 - +restrictionClass

OWLDataRange

- **RestrictionOnProperty**
 - 0..1
 - 0..*
 - +OWLonProperty
 - 0..1
 - 0..*
 - +propertyRestriction
Common Logic Phrases
CL Terms & Atoms

```
CommentedTerm
  comment : String
    0..1
      + commentedTerm

CommentForTerm
  + term
    1

Name

FunctionalTerm
  0..*
    + functionalTerm
    0..*
      + functionalTerm
      + operator
        1

ArgumentsForFunctionalTerm
  0..*
    + argument (ordered)

Argument

SequenceMarker

Term

Argument
  0..*
    + argument (ordered)

PredicateForAtomicSentence
  + predicate
  + atomicSentence
    0..*
      + atomicSentence

ArgumentsForAtomicSentence
  0..*
    + atomicSentence

AtomicSentence

Equation
  1
    + value
    0..*
      + equation
      0..*
        + equation

LvalueForEquation

RvalueForEquation

Atom
```

Copyright ©2007 Sandpiper Software, Inc.
Sentences

```
Sentence
  +sentence
  CommentForSentence
  +comment 0..1

Atom
  BooleanSentence
    CommentedSentence comment : String
  IrregularSentence
  QuantifiedSentence

Conjunction
  Disjunction
  Negation
  Implication
  Biconditional

ExistentialQuantification
  UniversalQuantification
```
There are no explicit 'true' and 'false' elements in the metamodel. These are empty cases of Conjunction (true) and Disjunction (false). That is why a Disjunction or Conjunction of zero sentences is allowed.
Quantified Sentences

QuantifiedSentence

UniversalQuantification
ExistentialQuantification

Sentence

+body

QuantificationForSentence

+quantification

BindingSequence

+quantifiedSentence

Binding

0..1

0..* +binding

BoundName

+binding

+boundName

0..1

Name

SequenceMarker

0..1

+boundSequenceMarker
Topic Maps

- Topic Maps represent another XML Schema based approach for conceptual knowledge representation
 - Part of the semantic web family of standards
 - Less expressive than RDFS/OWL

- Topic Maps are collections of topics, each of which represent a single subject, that are related to one another by associations.
 - Similar to RDF, but less expressive (currently)
 - Originally based on the notion of a publications index
 - Used primarily by the business community in Europe

- Recently standardized through the ISO
 - ISO 13250 - Data Model and XML Serialization
 - ISO 18024 - Query Language (early draft)
 - ISO 19756 - Constraint Language (early draft)
Many variations on DLs, depending on application requirements and reasoning capabilities (OWL represents a commonly used subset)

Developed primarily as an educational tool, to assist in understanding description logics in general
The UML Profile for RDF & OWL

- Intended to be highly intuitive for UML users
- Reuses UML constructs when they have the same semantics as OWL
- When this is not possible, stereotypes UML constructs that are consistent and as close as possible to OWL semantics
- Uses standard UML 2 notation
- In the few cases where this is not possible, follows the clarifications and elaborations of stereotype notation defined in UML 2.1
- Leverages the model library included in Appendix A for a number of constructs, for example statements, rdf:value, container and list elements, as well as built-in properties
Key Features of the RDF Profile

- rdfs:Resource is modeled as UML::InstanceSpecification
- Introduction of <<reifies>> stereotype of UML::Dependency to allow such instance specifications to reify classes, properties, individuals, statements, etc.
- rdf:Property is modeled as UML::AssociationClass and UML::Property, to provide greatest possible flexibility
- Several possible representations of various aspects of rdf:Property:

Alternate forms for rdf:Property, without a specified domain
RDF Property Subsetting Options

Alternate forms for rdf:Property, without a specified range
Example OWL Number, Value Constraints

OWL Cardinality – Restricted Multiplicity in Subtype

OWL allValuesFrom – Property Redefinition
OWL Property Redefinition (allValuesFrom) Using Association Classes

```
<<owlClass>>
  Thing
<<owlClass>>
  Color
<<objectProperty>>
  HasColor
<<rdfsSubPropertyOf>>
  HasBrightColor
<<owlClass>>
  BrightColoredThing
<<owlClass>>
  BrightColor
```

+hasColor
{redefines hasColor}
OWL Intersection, Union, Complement

<<owlClass>>
Person

<<owlClass>>
Tall Thing

<<intersectionOf>>

<<owlClass>>
Tall Person

<<owlClass>>
Gender

{ complete }

<<owlClass>>
Male

<<owlClass>>
Female

<<owlClass>>
Human Being

<<complementOf>>

<<owlClass>>
NonHuman

Copyright ©2007 Sandpiper Software, Inc.
OWL Disjointness Options

Simple binary disjoint relationship

Disjointness, multiple participants, common parent

Disjointness, multiple participants, no common parent
OWL Inverse Options

Simple inverse relationship

Inverse relationship among association classes
ODM Summary & Status

- Platform Independent (Normative) Metamodels (PIMs) include
 - RDF & OWL - abstract syntax, constraints for OWL DL & OWL Full, several compliance options
 - ISO Common Logic (CL)
 - ISO Topic Maps (TM)

- Informative Models
 - DL Core - high-level, relatively unconstrained Description Logics based metamodell (non-normative, informational)
 - Identifier (keys) model extension to UML for ER

- Adopted as an OMG standard in October 2006

- Finalization (FTF) is underway, with window for public comments through March 2007
Bridging KR and MDA

Generic UML Modeling Tool

UML Model Using UML Profile

Generic UML Model

Native Semantic Web Ontology Development Tool

UML-OWL Bridge

MOF/XMI Based Tooling
 e.g. Semantic Web Eclipse Plug-in

Native OWL Document

OWL-XMI Bridge

XMI OWL Document

Copyright ©2007 Sandpiper Software, Inc.
ODM Relationship to Other OMG Standards

ODM extensions under consideration
- Lossy mapping from CL to RDF/S & OWL
- Support for Semantic Web Services (SWSF, OWL-S), bindings to WSDL & possibly SOAP
- Mappings for W3C Rule Interchange Format (RIF) (i.e. vocab/ontology \(\rightarrow\) rules, including PRR)
- New requirements from SOA ABSIG anticipated
Relationship to ISO Standards

- CL Metamodel is identical to the UML diagrams in ISO FDIS 24707
- High degree of synergy between ODM and Topic Maps ISO FCD 13250-2 working group
- All ODM metamodels are referenced and used in ISO CD 19763 (MMF - Metamodel Framework, Model Registry specification)
- Current work in OMG to develop a metamodel for ISO Express will include mappings to ODM
- Mappings from multiple components of IMM (e.g., ER) are under consideration
Relationship to Metadata Standards

- Sandpiper participates in W3C Semantic Web Deployment (SWD) WG
 - Products will include RDF Vocabulary recommendations, SKOS for thesauri
 - Continuation of other best practices work initiated in original Semantic Web Best Practices & Deployment WG
- ODM metamodels inform latest modifications proposed for revisions to ISO 11179 Metadata Registration specification
- We are also working with NCITS L8 & DoD XMDR project to promote interoperability with ISO 19763, ISO 11179 metadata standards efforts
Next Steps

- W3C is moving the ball forward on a number of relevant fronts: RDF Query, Rules, SWS
- Ontology PSIG roadmap includes MOF revisions to support multiple classification, “Reverse ODM” - representation for MOF in RDF
- Longer term: extensions to ODM to support Semantic Web Services, mappings to IMM Metamodels for ER & ISO Express, Rules
- OMG BMI DTF Semantics for Business Vocabularies & Rules (SBVR) will be logically grounded in Common Logic / ODM CL Metamodel
- Planned mapping to forthcoming Production Rule Representation (PRR) specification
- May also consider leveraging mapping from UML for BPEL to ODM extensions (e.g., to the PSL component of SWSF)
- Requirements and assistance needed
Application Vision

- **Rich content services**
 - Search relevance
 - Collaborative applications
 - Dramatic increases in personalization
 - New analytics and business intelligence capabilities

- **Dramatic increases in interoperability through much deeper semantic integration**

- **Achieve MDA vision through**
 - Model validation
 - Separation of vocabulary from software & rules - increased value in patterns, abstraction
 - Component based vocabulary & semantics - increased scalability, support for grid-based applications, Web 2.0
 - Semantics for Web services
 - Declarative exchange of behaviors, policies, and agreements
 - Dynamic discovery of new services
 - Reasoning to support on-the-fly composition
 - Integrated use with discovered information services → ultimate fully-automated & customized user experience

- **New capabilities in policy and context based applications**
Management Application Integration (MAI)

Synchronization of model repositories using RDF/S & OWL based representation & transformations provides new integration capabilities for HP OpenView

Ontology was developed using an ODM-based development environment; Jena Rules support model transformations

See http://www.mel.nist.gov/msid/conferences/SWESE/accepted_papers.html

Copyright ©2007 Sandpiper Software, Inc.

Copyright ©2007 Sandpiper Software, Inc.
Automated Data Gathering / Contextual Actions

∞ Agents retrieve data from other business services, using attributes of the original event to formulate queries (i.e. LAT/LONG)

∞ These data points are processed and presented to subscribed users in real time as RTAM alerts
Geospatial Threat Map

- As the agent gathers additional intelligence from other services, a ‘threat map’ begins to take shape...

- Mission commanders utilize this event-driven, automated process to assess mission risks

- Friendly force information is added to the threat map to allow mission commanders to identify which resources can be tasked for a rescue mission
Cognitive Assistant that Learns & Organizes

- DARPA IPTO funded program
- Personal office assistant, tasked with:
 - Noticing things in the cyber and physical environments
 - Aggregating what it notices, thinks, and does
 - Executing, adding/deleting, suspending/resuming tasks
 - Planning to achieve abstract objectives
 - Anticipating things it may be called upon to do or respond to
 - Interacting with the user
 - Adapting its behavior in response to past experience, user guidance

- 22 participating organizations

CALO & InferenceWeb Slides courtesy Dr. Deborah L. McGuinness, Stanford Knowledge Systems, AI Laboratories
See http://iw.stanford.edu for more on InferenceWeb

Copyright ©2007 Sandpiper Software, Inc.
Working with a Cognitive Assistant

- **CALO** users need to
 - **Understand** system behavior and responses
 - **Trust** system reasoning and actions

- To believe and act on recommendations from **CALO**, users need ways of exploring how and why the system acted, responded, recommended, and reasoned the way it did.

- **Additional wrinkle:** **CALO** knowledge, behavior, and assumptions are constantly changing through several forms of machine learning.

A unified framework for explaining behavior and reasoning is essential for users to trust and adopt cognitive assistants.
ICEE Architecture

- Collaboration Agent
- Knowledge Manager (KM)
 - KM Explainer
- Task Manager (TM)
 - TM Explainer
 - TM Wrapper
- Explanation Dispatcher
- Constraint Explainer
- Constraint Reasoner
- Justification Generator
- Task State Database
An InferenceWeb Primer

1. Registry and service support for knowledge provenance.

2. Language for encoding hybrid, distributed proof fragments (both formal and informal).

3. Declarative inference rule representation for checking proofs.

4. Multiple strategies for proof abstraction, presentation, and interaction.

Framework for *explaining* reasoning and execution tasks by abstracting, storing, exchanging, combining, annotating, filtering, comparing, and rendering justifications from varied cognitive reasoners.
Discussion
Acronym Soup

- **AD PTF** - OMG Analysis & Design Task Force
- **BMI DTF** - OMG Business Modeling & Integration Domain Task Force
- **BPEL4WS** - Business Process Execution Language for Web Services
- **CL** - ISO 24707 Common Logic: a family of first order logic languages, including Conceptual Graphs & Common Logic Interchange Format - a successor to the Knowledge Interchange Format (KIF), http://cl.tamu.edu/
- **DAML** - DARPA Agent Mark-up Language, one of the primary languages leading to the development of OWL, http://www.daml.org/
- **DAML-S** - Services ontology for DAML, http://www.daml.org/services/
- **DL** - Description Logics: a subset of first order logic, for which tractable & complete reasoning systems are available
- **ER** - Entity Relationship modeling
- **IMM** - Information Management Metamodell (a.k.a CWM2)
- **MMF** - Metamodel Management Framework (ISO 19763)
- **ODM** - Ontology Definition Metamodell
More Acronym Soup

- **OWL** - W3C Web Ontology Language, a formal W3C Recommendation as of 10 February 2004, http://www.w3.org/TR/owl-semantics/
- **OWL DL** - the normative description logics dialect of OWL
- **OWL Full** - the normative OWL dialect that has increased expressivity over OWL DL, but does not conform to DL reasoning requirements
- **OWL-S** - a set of OWL ontology components that extend the W3C OWL specifications to support Semantic Web Services, http://www.daml.org/services/
- **PRR** - Production Rules Representation
- **RDF** - Resource Description Framework, http://www.w3.org/TR/rdf-concepts/
- **SBVR** - Semantics for Business Vocabularies and Rules
- **SOA** - Service Oriented Architecture
- **SOAP** - Simple Object Access Protocol, http://www.w3.org/TR/soap/
- **SWSF** - Semantic Web Services Framework, http://www.w3.org/Submission/SWSF/
- **WSDL** - Web Services Description Language