Exploratory Development of a UBL Validation Tool

Peter Denno

National Institute of Standards and Technology

Premise

• When business terms are defined in a formal ontology, what is entailed by those terms becomes known.

 An investigation into how an ontology serve the UBL message assembly and validation processes

Outline

- Where might using an ontology make sense?
 - Codes
 - UBL Common Components
- Exploratory Software
- Future

Q: Use an ontology where? A: Codes

- Codes vary with respect to information content:
 - "Type 1": relate an identifier with a natural language term
 - Currency codes (ISO 4217), Country Codes (ISO 3166).
 - XSD schema checkers can ensure the identifier is in the code list
 - Ontology just links identifier to equivalent concept

Q: Use an ontology where? A: Codes

- Codes vary with respect to information content:
 - "Type 2": each codelist item populates a small information model:
 - UN Rec 20 LOCODES (location codes).
 - Each entry indicates whether the location contains a port, airport, rail terminal, or road terminal
 - Ontology might embody each such fact:
 - USBAL = Baltimore
 - Baltimore has a port
 - Baltimore has a rail terminal...

Q: Use an ontology where? A: Codes

- Codes vary with respect to information content:
 - "Type 3": like Type 1 (identifier = term) but the term has significant meaning in business transactions:
 - Incoterms 2000 (ICC trade terms: FOB, EXW...)
 - Each entry concerns particular obligations, risks and logistical concerns on part of buyer and seller
 - Ontology might embody each such fact:
 - FOB = "Free On Board"
 - Buyer responsible for nominating a Carrier
 - Buyer pays for Carriage, assumes Risk when "crosses ships rail"
 - Place named is a Port, not a Land Terminal
 - Buyer pays import/export duties...

Q: Use an ontology where? A: UBL Common Components

- 100's of terms that could be described in an ontology:
 - TransportContract
 - It is a Contract
 - Contracts describe Obligations of Parties
 - It is related to the Transport of something....
 - FlashpointTemperature
 - It is a Temperature Measurement
 - It is a Property used to describe some Hazardous Materials....

Suppose these things are in the ontology. Then what?

- Ontology-aware message assembly and validation tools
 - Assist in discriminating the meaning of business terms in the various UBL contexts
 - Assist in validating message types
 - Assist in validating message instances
 - Assist in developing transaction choreography

Using the ontology

• [Under construction, examples discriminating term meaning, validating message type, instance document, 2003 BPSS planning experiment.]

Software tool

- One-month feasibility and development study
 - Use UBL-Order-1.0.xsd, and related Common Components
 - Use SUMO (Suggested Upper Merged Ontology)
 - Use it with Sigma (Articulate Software, Inc.)
 - Use it stand-alone too, with Vampire (also part of Sigma)
 - Model a few Incoterms and use Rec 20 Locodes
 - Use Components from 2004 AMIS Project "AMIS-1" experiment (OAGIS .xsd code).

- Tool ought to "speak the language" of the message designer.
 - But linking to SUMO ontology requires relating such terms to the language of SUMO.
 - Otherwise it is just another expert system-style tool (checking for this and that without regard to the bigger picture, and without ability to validate the ontology itself).
- Answer?
 - "Mediating axioms" in an interlingua
 - More work on SUMO validation

- Linking items in the UBL XML Schema "Occurrence Tree" to the user's "UBL-based Axioms"
 - Unlike AMIS-1 work, no XML Linkbase.
 - Instead, use a (Schematron-like?) XML file that records the user's rule, its documentation, etc. as well as an index into the "Occurrence Tree"

2004-11-23 Tool Screenshot

```
_ X X
Works File
Validation Message Assembly Registry
Documentation:
Dictionary Entry Term: Order. Delivery Terms
Definition: associates the Order with the delivery terms agreed between seller and buyer with regard to!
 the delivery of goods.
Cardinality: 0..1
 ----- Type Information -----
Element: DeliveryTerms
Namespace: (cac) urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-1.0
Type: DeliveryTermsType
doc-schema/UBL-Order-1.0.xsdo (XML Schema)
     #E OuoteDocumentReference
     ₱E Additional Document Reference
    ₱EBuyerParty
     ₱ E Seller Party
     E Originator Party
     ₱E Freight Forwarder Party
     ₱EDelivery
     ₱EDeliveryTerms
      ₽EID
         Aidentification Scheme ID
         Aidentification Scheme Name
         | dentificationSchemeAgencyID
         | AidentificationSchemeAgencyName
         Aidentification Scheme Version ID
         Aidentification Scheme URI
         Midentification Scheme Data URI
      ₱ E Relevant Location
                                                        < >
                                                 Validate Delete Find
Axioms:
(=>
    (and
      (Order ?ORDER)
      (DeliveryTerms ?ORDER ?DTERMS)
      (DeliveryTerms.Identifier ?DTERMS FOB)
      (DeliveryTerms.Identifier-identificationSchemeID ?DTERMS incoterms2000)))
    (exists (?CARRIER)
      (FreightForwarderParty ?ORDER ?CARRIER)))□
Message: Select a Link from the 'Selected Link' pulldown menu.
```


An Incoterm, in English

An Incoterm axiom, in Sigma

- Some codes are huge
 - Rec 20 LOCODES: 40,000 entries, each requiring a few formulas in the KB
 - Ancillary tools to generate the KB instances.
 - Load parts on demand
 - I break the code up by country, still thousands in US.

- Pulling it all together:
 - How some terms used in the user's rules are known (e.g. in the screenshot, how "FOB" and "incoterms2000" are known, needs work.)
 - [Much more to be discussed as I "pull it all together."]

Conclusion

- With an ontology-aware tool...
 - Effects that cut across a wide space of concerns are revealed
 - [More work here.]
- Project Feasibility
 - [More work here.]

2004-11-23 UBL Tool ₁₈