Ontolog Project Report

November 5, 2003
What is an Formal Ontology?

- A n ontololgy is a shared conceptualization of a domain
- An ontology is a set of definitions in a formal language for terms describing the world.
- Different ontologies may differ in terms of their level of formalization
Origins of the Ontolog Forum

- **March 2002: Peter Yim and the UBL LCSC**
 - Majority of interest in learning about ontologies
 - Timetables and deadlines limited attention

- **September 2002: Reconstituted Ontolog Forum**
 - Open community
 - Charter
 - Discuss practical issues and strategies associated with the development of both formal and informal ontologies used in business
 - Identify ontological engineering approaches that might be applied to the UBL effort
Ontolog Membership

- > 70 subscribers, in 10 countries
- Overlap with UBL committee
 - Bill Burcham
 - Sally Chan
 - Eduardo Gutentag
 - Monica Martin
 - Tim McGrath
 - Bill Meadows
 - Sue Probert
 - Marion Royal
 - Peter Yim
- Join us! (As either observers or active members)
Ontolog Logistics

- Infrastructure provided by CIM3.net
- Archived mailing list
- Shared, web-accessable work space
- Community Wiki
- Real-time screen and application sharing
- Weekly phone meetings (Thursday, 10:30 Pacific)
UBL-Ontology Project

- **Mission:** Create a formal ontology based on the UBL schemas

- Aligns with general Ontolog community objectives
 - Learn about ontologies (concepts, language, best practices)
 - Identify lifecycle process for developing ontology-based systems
 - Increase awareness and understanding of ontology tools
 - Work with a group of people on a common ontology
 - Apply ontologies to real-world applications, especially eBusiness

- **Participation:** ~23 individuals (~10 active participants)
Expected Relationship to UBL

- UBL schemas are starting point for formalization
- Resulting ontology expected to
 - Extend and formalize UBL English definitions
 - Formalize relationship semantics (hierarchical and non-hierarchical)
- Ontolog team may provide “early warnings” to UBL teams (e.g., Context Methodology, or when get stuck)
- Input to UBL biased towards “actionable feedback”
- Anticipates an accurate modeling of the UBL domain that could result in some level of validation, acceptance, approval, or adoption by the UBL committee.
Initial Technical Goals

- Leverage as much of the UBL committee’s work as possible (don’t reinvent the wheel)
- Leverage open processes, technologies, content, and philosophy
- Map to multiple upper ontologies (currently de-emphasized)
- Demonstrate multiple tools and methodologies (currently de-emphasized)
- Implement a real-life, public-domain application in parallel with the development of the ontology
Project Management Strategy

- Demonstration project
- Heavily based on consensus (very voluntary)
- Iterative project management model
 - Settled key technology and methodology questions ahead of full requirements
 - Some issues with alignment and shared understanding (project goals, drivers, and constraints)
High-Level Methodology

- Determine the domain and scope of the ontology
- Consider reusing existing ontologies
- Enumerate important terms in the ontology
- Define the classes and class hierarchy
- Define the properties of the classes
- Define the additional properties related to or necessary for classes (i.e., cardinality, bidirectional/mutual exclusiveness, etc.)
- Create instances
- Create axioms/rules
Technology Selection

- **Base ontology**: Suggested Upper Merged Ontology (SUMO)
- **Normative Representation Language**: Knowledge Interchange Format (SUO-KIF)
- **Other derivative representations will be considered**
 - OWL, SQL, XML, “Protege”, etc.
- **Tools**
 - Text editors
 - Adam Pease’s SIGMA knowledge engineering environment
 - Sevcenko’s SUO-KIF ontology browser
 - Protege
Determine Domain and Scope

- Initial doctype targets: Purchase Order, Invoice, Shipping Documents
- Use case articulation started in May
 - Automated reconciliation of Purchase Orders and Invoices
 - Identifying proper structure of an address from context
 - Mapping between different standards and representation languages
- Primary workshop objective: Identify detailed utilization scenarios that can drive modeling

Ongoing
Considering Ontology Reuse

Complete

- **Base ontology:** Suggested Upper Merged Ontology (SUMO)
 - Open
 - Rich representational language (KIF)

- **Implications**
 - Limited tools support
 - Can’t be used natively in Protege (different levels of richness)
 - Raging “Protege vs KIF” debate in August/September
 - Protege well-developed and simple but not as expressive as KIF
 - Modeling process cannot rely on Protege unless bidirectionality can be demonstrated
 - Elevated training & knowledge transfer requirements
Enumerate Important Terms

Commencing

- Some initial, exploratory modeling of UBL terms in July timeframe
- Hampered by
 - Limited understanding of UBL
 - Lack of modeling principles (What’s the best/agreed upon way to model a given concept?)
- Primary Workshop Objectives:
 - Understand UBL modeling philosophy
 - Understand / agree upon definition construction rules
 - Increase familiarity with UBL deliverables
 - Focus on behavioral specifications (”use cases”)
Define Classes and Hierarchy

Commencing

- Adam Pease conducted an Ontological Engineering Tutorial in May
 - Similar to this evening’s tutorial

- Primary Workshop Objectives
 - Establish and demonstrate “fine-grained” methodology for translating “UBL terms” into KIF expressions
 - Establish an approach for dealing with the relationship between real world entities and their XML analogs
Feedback and Guidance

- Does this make sense (why / why not)?
- Could UBL be used differently with additional semantic formalization?
- What (additional) semantic properties should be modeled?
- How is UBL expected to evolve in the future?
- Are there any existing / expected gaps or issues with UBL?
- When should the Ontolog team look beyond UBL (e.g., to Core Components) to support semantic formalization?