
Standard Upper Ontology Knowledge Interchange Format

2/18/2004
Adam Pease

adampease @ earthlink . net

Standard Upper Ontology Knowledge Interchange Format

Table of Contents
TABLE OF CONTENTS...2

INTRODUCTION..3

WRITING SUO-KIF..4

SYNTAX..6

INTRODUCTION...6
CHARACTERS...6
LANGUAGE ELEMENTS..6
EXPRESSIONS...7
COMMENTS..8
LOGICAL SENTENCES..9
QUANTIFIED SENTENCES..9
FUNCTIONAL TERMS...9
RELATIONAL SENTENCES...9
EQUATIONS AND INEQUALITIES...10
TRUE AND FALSE...10

COMPUTATIONAL COMPLEXITY AND EXPRESSIVENESS...11

VARIABLES IN THE PREDICATE POSITION..11
ROW VARIABLES..11
QUOTING..11

REFERENCES...13

APPENDIX A - BNF SYNTAX...14

Page 2

Standard Upper Ontology Knowledge Interchange Format

Introduction
Standard Upper Ontology Knowledge Interchange Format (SUO-KIF) is a language
designed for use in the authoring and interchange of knowledge. SUO-KIF has
declarative semantics. It is possible to understand the meaning of expressions in the
language without appeal to an interpreter for manipulating those expressions. In this way,
KIF differs from other languages that are based on specific interpreters, such as Emycin
and Prolog. SUO-KIF is also logically comprehensive -- at its most general, it provides
for the expression of arbitrary logical sentences. In this way, it differs from relational
database languages (like SQL) and logic programming languages (like Prolog). SUO-
KIF is intended primarily a first-order language, which is a good compromise between
the computational demands of reasoning and richness of representation. In later sections
of this document we describe ways in which SUO-KIF is made as expressive as possible
without becoming higher-order.

SUO-KIF was derived from KIF (Genesereth, 1992) to support the definition of the
Suggested Upper Merged Ontology (Niles & Pease, 2001).

This document contains a guide to writing knowledge in SUO-KIF as well as a more
formal reference. Logicians may wish to skip the introductory section “Writing SUO-
KIF” and move straight to the details of the language.

Page 3

Standard Upper Ontology Knowledge Interchange Format

Writing SUO-KIF
This section attempts to give a very quick introduction to writing SUO-KIF. A full
introduction to logic is however beyond the scope of this document and (Nolt et al, 1998)
is recommended. This section will also assume the use of some of the basic ontological
content of the SUMO (Niles & Pease, 2001), since otherwise we would have to define
relations like instance and subclass.

SUO-KIF terms can be either individuals such as BillClinton and The82ndAirborne, or
classes, such as Person and MilitaryUnit. We can define relations such as agent and
functions such as GovernmentFn. Note that relations and functions are instances of the
class of all relations and the class of all functions, respectively.

Terms are combined into sentences in order to make statements of fact, for example that
“The 82nd Airborne is a military unit”, which would be stated in SUO-KIF as

(instance The82ndAirborne MilitaryUnit)

and “The class of all Person(s) is a subclass of the class of all animals.”
(subclass Person Animal)

SUO-KIF allows us to connect statements with and and or. “Kofi Annan is a human and
he occupies the position of Secretary General at the United Nations.”

(and
 (instance KofiAnnan Human)
 (occupiesPosition KofiAnnan SecretaryGeneral UnitedNations))

Note that the connective or differs from common English usage in that or means one or
the other or both. So that the following statement is also true:

(or
 (instance KofiAnnan Human)
 (occupiesPosition KofiAnnan SecretaryGeneral UnitedNations))

Statements can also be negated with not. “Silvio Berlusconi is not the president of
Libya.”

(not
 (occupiesPosition SilvioBerlusconi President Libya))

SUO-KIF supports functions, which have the same general meaning as the familiar
refrain from high-school algebra that “A function is a relation such that every value of
the domain has a unique value in the range.” Relational expressions are statements with a
truth value. For example, the statement that the class of people is a subclass of the class
of animals is true. Functional expressions however denote terms. For example
(GovernmentFn Germany) denotes the individual entity which is the government of
Germany. (GovernmentFn Mordor) has no truth value. It simply denotes the
government of the fictional country of Mordor.

Page 4

Standard Upper Ontology Knowledge Interchange Format

SUO-KIF uses the characters => to form rules. It is called implication. This can be read
as implies, or as “if argument-1 then argument-2”. Terms can also be combined to form
rules such as “If a person is sleeping he or she cannot perform an intentional action”.
(=>
 (and
 (instance ?P Human)
 (attribute ?SL Asleep))
 (not
 (exists ?ACT
 (and
 (instance ?ACT IntentionalProcess)
 (overlaps ?ACT ?SL)
 (agent ?ACT ?P)))))

Less often used is the operator <=>, which is called bi-implication. It is a shorthand for a
combination of implications. Formally, (<=> A B) is equivalent to (=> A B) and
(=> B A).

The above rule contains a logical operator exists, otherwise known as existential
quantification. It says that there exists some term, denoted by the variable ?ACT that
possesses the following properties. There may be more than one such entity, but there is
at least one. It is a very powerful operator, which lets us talk about something that may
not have been named, or whose name is unknown. The entity is described, rather than
names, and it is up to an inference engine to apply that description to facts known about
the world.

A related operator is forall, which states that the following characteristics hold about all
entities denoted by a variable. To compare the two operators, consider the following
examples

“All farmers like tractors.” is stated as
(forall (?F ?T)
 (=>
 (and
 (instance ?F Farmer)
 (instance ?T Tractor))
 (likes ?F ?T)))

or, literally, “For all F and T if F is a farmer and T is a tractor, F likes T.” “Some farmer
likes a tractor.” is stated as
(exists (?F ?T)
 (and
 (instance ?F Farmer)
 (instance ?T Tractor)
 (likes ?F ?T)))

or, literally, “There exists F and T such that F is a farmer, T is a tractor, and F likes T.”

Although not a required part of the syntax, by convention, relations are written with an
initial lowercase character, and functions, non-relational instances and classes are written
with initial capital letters.

Page 5

Standard Upper Ontology Knowledge Interchange Format

Syntax
Introduction
SUO-KIF may be described in three layers. First, there are the basic characters of the
language. These characters can be combined to form language elements. Finally, the
lexemes of the language can be combined to form grammatically legal expressions.
Although this layering is not strictly essential to the specification of SUO-KIF, it
simplifies the description of the syntax by dealing with white space at the lexeme level
and eliminating that detail from the expression level.
The notation nonterminal* means zero or more occurrences; nonterminal+ means one
or more occurrences; The nonterminals space, tab, return, linefeed, and page refer
to the characters corresponding to ascii codes 32, 9, 13, 10, and 12, respectively.

Characters
The alphabet of KIF consists of 7 bit blocks of data. In this document, we refer to SUO-
KIF data blocks via their usual ASCII encodings as characters.
SUO-KIF characters are classified as upper case letters, lower case letters, digits, alpha
characters (non-alphabetic characters that are used in the same way that letters are used),
white space, and other characters (every ascii character that is not in one of the other
categories). Initial characters which are the first character of a term, must be alphabetic.
Constants and variables consist of an initial alphabetic character plus a sequence of
alphabetic, numeric or dash characters (prepended with ‘?’ or ‘@’ in the case of
variables).
 upper ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z

 lower ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z

 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 special ::= ! | $ | % | & | * | + | - | . | / | < | = | > | ? |
 @ | _ | ~ |

 white ::= space | tab | return | linefeed | page

 initialchar ::= upper | lower

 wordchar ::= upper | lower | digit | - | _ | special

 character ::= upper | lower | digit | special | white

Use of characters in "special" for word characters is discouraged as they may be given
particular meaning in future versions of the standard or its extensions.
Language Elements

A character string is a series of characters enclosed in quotation marks. The escape
character \ is used to permit the inclusion of quotation marks and the \ character itself
within such strings.

Page 6

Standard Upper Ontology Knowledge Interchange Format

 string ::= "character*"

A constant is a letter or digit followed by any number of other legal word characters.
 word ::= initialchar wordchar*

A variable is a word in which the first character is ? or @. A variable with a '@' character
is called "row variable" or "sequence variable". It holds a variable number of arguments.

 variable ::= ?word | @word

Semantically, there are four categories of constants in SUO-KIF -- object constants,
function constants, relation constants, and logical constants. Object constants are used to
denote individual objects. Function constants denote functions on those objects. Relation
constants denote relations. Logical constants express conditions about the world and are
either true or false. SUO-KIF is unusual among logical languages in that there is no
syntactic distinction among these four types of constants; any constant can be used where
any other constant can be used. The differences between these categories of constants is
entirely semantic.
Expressions
The legal expressions of SUO-KIF are formed from lexemes according to the rules
presented in this section. Terms are used to denote objects in the world being described;
sentences are used to express facts about the world. Sentences can be used as terms,
allowing higher-order expressions to be written. A knowledge base is a finite set of
sentences.

 number ::= [-] digit+ [. digit+] [exponent]
 exponent ::= e [-] digit+

There are several types of terms in SUO-KIF -- variables, constants, character strings,
and functional terms, as well as sentences themselves.

 term ::= variable | word | string | funterm | number | sentence

A functional term consists of a constant and an arbitrary number of argument terms
surrounded by matching parentheses. Note that there is no syntactic restriction on the
number of argument terms; arity restrictions in SUO-KIF are treated semantically.
 relword ::= initialchar wordchar*
 funword ::= initialchar wordchar*

No "relword" and "funword" shall have the same character sequence in a particular
knowledge base.

 funterm ::= (funword term+) | (funword sentence+)

The following BNF defines the set of legal sentences in SUO-KIF. There are six types of
sentences. We have already mentioned logical constants.

 sentence ::= word | equation | relsent | logsent | quantsent

An equation consists of the = operator and two terms.

Page 7

Standard Upper Ontology Knowledge Interchange Format

 equation ::= (= term term)

An implicit relational sentence consists of a constant and an arbitrary number of
arguments. As with functional terms, there is no syntactic restriction on the number of
arguments in a relation sentence.

 relsent ::= (relword term+) | (relword sentence+)

The syntax of logical sentences depends on the logical operator involved. A sentence
involving the not operator is called a negation. A sentence involving the and operator is
called a conjunction, and the arguments are called conjuncts. A sentence involving the or
operator is called a disjunction, and the arguments are called disjuncts. A sentence
involving the => operator is called an implication; all of its arguments but the last are
called antecedents; and the last argument is called the consequent. A sentence involving
the <=> operator is called an equivalence.
 logsent ::= (not sentence) |
 (and sentence+) |
 (or sentence+) |
 (=> sentence sentence) |
 (<=> sentence sentence)

There are two types of quantified sentences -- a universally quantified sentence is
signalled by the use of the forall operator, and an existentially quantified sentence is
signalled by the use of the exists operator. The first argument in each case is a list of
variable specifications. A variable specification is either a variable or a list consisting of
a variable and a term denoting a relation that restricts the domain of the specified
variable.

 quantsent ::= (forall (variable+) sentence) |
 (exists (variable+) sentence)

Note that, according to these rules, it is permissible to write sentences with free variables,
i.e. variables that do not occur within the scope of any enclosing quantifiers. The
significance of the free variables in a sentence depends on the use of the sentence. When
we assert the truth of a sentence with free variables, we are, in effect, saying that the
sentence is true for all values of the free variables, i.e. the variables are universally
quantified. When we ask whether a sentence with free variables is true, we are, in effect,
asking whether there are any values for the free variables for which the sentence is true,
i.e. the variables are existentially quantified.
It is important to keep in mind that a knowledge base is a set of sentences, not a
sequence; and, therefore, the order of forms within a knowledge base is unimportant.
Order may have heuristic value to deductive programs by suggesting an order in which to
use those sentences; however, this implicit approach to knowledge exchange lies outside
of the definition of SUO-KIF.

Comments
Comments in SUO-KIF are indicated with a single semi-colon. All characters from the
semi-colon to the end of the line can be ignored.

Page 8

Standard Upper Ontology Knowledge Interchange Format

Logic
Logical Sentences

A negation is true if and only if the negated
sentence is false. A conjunction is true if and
only if every conjunct is true. A disjunction is
true if and only if at least one of the disjuncts is
true. If every antecedent in an implication is
true, then the implication as a whole is true if
and only if the the consequent is true. If any of
the antecedents is false, then the implication as
a whole is true, regardless of the truth value of
the consequent. A reverse implication is just an
implication with the consequent and antecedents reversed. An
equivalence, bi-implication, is equivalent to the conjunction of an
implication and a reverse implication.

Quantified Sentences

A simple existentially quantified sentence (one in which the first argument is a list of
variables) is true if and only if the embedded sentence is true for some value of the
variables mentioned in the first argument.

A simple universally quantified sentence (one in which the first argument is a list of
variables) is true if and only if the embedded sentence is true for every value of the
variables mentioned in the first argument.

Note that the significance of free variables in quantifier-free sentences depends on
context. Free variables in an assertion are assumed to be universally quantified. Free
variables in a query are assumed to be existentially quantified. In other words, the
meaning of free variables is determined by the way in which SUO-KIF is used. It cannot
be unambiguously defined within SUO-KIF itself. To be certain of the usage in all
contexts, use explicit quantifiers.

Functional Terms

The value of a functional term is obtained by applying the function denoted by the
function constant in the term to the objects denoted by the arguments.

For example, the value of the term (+ 2 3) is obtained by applying the addition function
(the function denoted by +) to the numbers 2 and 3 (the objects denoted by the object
constants 2 and 3) to obtain the value 5, which is the value of the object constant 5.

Relational Sentences

A simple relational sentence is true if and only if the relation denoted by the relation
constant in the sentence is true of the objects denoted by the arguments. Equivalently,

Page 9

A (not A)
T F
F T

A B (and A B)
T T T
T F F
F T F
F F F

A B (or A B)
T T T
T F T
F T T
F F F

A B (=> A B)
T T T
T F F
F T T
F F T

A B (<=> A B)
T T T
T F F
F F T
F T F

Standard Upper Ontology Knowledge Interchange Format

viewing a relation as a set of tuples, we say that the relational sentence is true if and only
if the tuple of objects formed from the values of the arguments is a member of the set of
tuples denoted by the relation constant.

Equations and Inequalities

An equation is true if and only if the terms in the equation refer to the same object in the
universe of discourse.

An inequality is true if and only if the terms in the equation refer to distinct objects in the
universe of discourse.

True and False

The truth value of true is true, and the truth value of false is false.

Page 10

Standard Upper Ontology Knowledge Interchange Format

Computational Complexity and Expressiveness
Variables in the Predicate Position
SUO-KIF allows variables in the predicate position, such as (?REL ?V1 ?V2).
Technically, if the value of ?REL ranges over the universe of all possible relations, then
SUO_KIF would be higher-order. However, in a practical reasoning system, ?REL needs
only to range over the set of relations already defined in the knowledge base, which is
first order. Most reasoning systems however take the broader interpretation, and will
disallow variables in the predicate position. One solution for this is to pre-process every
statement to add a “dummy” relation, such as (holds ?REL ?V1 ?V2), and then remove
the dummy relation in proof output. This is the solution taken in the Sigma knowledge
engineering system (Pease, 2003).
Row Variables
While the unbounded implementation the existence of row variables would make SUO-
KIF technically an "infinitary logic", with associated issues in efficient implementation, a
bounded interpretation does keep SUO-KIF out of first order.
One option is to treat row variables as "macros", which would get expanded
automatically so
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 @ROW))
 (holds ?REL2 @ROW))
would become
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 ?ARG1))
 (holds ?REL2 ?ARG1))

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 ?ARG1 ?ARG2))
 (holds ?REL2 ?ARG1 ?ARG2))
etc.
Note that this "macro" style expansion has the problem that unlike the true semantics of
row variables, that it is not infinite. If the interpretation only expands to five variables,
that there is a problem if the knowledge engineer uses a relation with six.

This is the solution taken again the Sigma knowledge engineering system (Pease, 2003).

Quoting

The original version of KIF had an explicit single quote for denoting uninterpreted
structures that were essentially terms. This was used to state complex expressions which
could be read by humans, without incurring the computational cost of becoming higher-

Page 11

Standard Upper Ontology Knowledge Interchange Format

order. For example (believes Mary (likes John Sue)) is a higher-order expression,
because the second argument to ‘believes’ is not a term. (believes Mary ‘(likes John
Sue)) is first order in the original KIF because the single quote character converts the
following list into a term. This however is not strictly necessary since a reasoning system
can apply a quote automatically when needed. SUO-KIF allows the former expression
and leaves it to a reasoning system how it wishes to handle it. If a higher-order
interpretation is possible, then that is allowed. If not, then the reasoning system is
responsible for quoting any argument to a relation which is not a term. Sigma employs
the latter approach.

Page 12

Standard Upper Ontology Knowledge Interchange Format

References
Genesereth, M., (1991). “Knowledge Interchange Format'', In Proceedings of the Second

International Conference on the Principles of Knowledge Representation and
Reasoning, Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman Publishers, pp
238-249.

Niles, I., & Pease, A., (2001), Toward a Standard Upper Ontology, in Proceedings of the
2nd International Conference on Formal Ontology in Information Systems (FOIS-
2001), Chris Welty and Barry Smith, eds.

Nolt, J., Rohatyn, D., and Varzi, A., (1998). Schaum’s Outlines: Logic, second edition,
McGraw-Hill.

Pease, A., (2003). The Sigma Ontology Development Environment, in Working Notes of
the IJCAI-2003 Workshop on Ontology and Distributed Systems, August 9,
Acapulco, Mexico.

Acknowledgements
Many thanks to the US Army for funding the development of the SUMO and SUO-KIF.

Page 13

Standard Upper Ontology Knowledge Interchange Format

Appendix A - BNF Syntax
 upper ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z

 lower ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z

 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 special ::= ! | $ | % | & | * | + | - | . | / | < | = | > | ? |
 @ | _ | ~ |

 white ::= space | tab | return | linefeed | page

 initialchar ::= upper | lower

 wordchar ::= upper | lower | digit | - | _ | special

 character ::= upper | lower | digit | special | white

 word ::= initialchar wordchar*

 string ::= "character*"

 variable ::= ?word | @word

 number ::= [-] digit+ [. digit+] [exponent]

 exponent ::= e [-] digit+

 term ::= variable | word | string | funterm | number | sentence

 relword ::= initialchar wordchar*

 funword ::= initialchar wordchar*

 funterm ::= (funword term+) | (funword sentence+)

 sentence ::= word | equation | inequality |
 relsent | logsent | quantsent

 equation ::= (= term term)

 relsent ::= (relword term+) | (relword sentence+)

 logsent ::= (not sentence) |
 (and sentence+) |
 (or sentence+) |
 (=> sentence sentence) |
 (<=> sentence sentence)

 quantsent ::= (forall (variable+) sentence) |
 (exists (variable+) sentence)

Page 14

