Introduction

The last year has been really exciting for me, meeting people from different focus areas in my role as Coordinator to the EC during the pilot phase of FuturICT project. The need for the European Commission to put down its mark on the research landscape has coincided firstly with a desire by the community to come together and secondly with several major events, that have highlighted the need to really understand complex systems. I get the same feeling now that I had back in the early 80’s when chaos theory was bringing together people from many disciplines to understand the paradigm shift away from determinism that its discovery gave us. The work we are doing with FuturICT is just as exciting, if not more so, mainly because the potential gain to society is huge. We have developed a comprehensive research roadmap that has energized the community and built tremendous international commitment to move towards our vision. Carrying out interdisciplinary work is not easy in any environment, but when this is spread across soft and hard sciences it is much harder, particularly bearing in mind there are now more than 700 people who we interact with. So far, with everyone’s support, I think we are getting the balance right. That said, now is the time to intensify our focus and lobbying in order to guarantee that FuturICT is chosen as one of the FET Flagship projects. In the best interests of society, and for Europe, I think that we simply cannot afford to miss this opportunity.

Steven Bishop

FuturICT: Global Computing for Our Complex World

We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. For this, the FuturICT flagship project will promote an interdisciplinary integration of natural, social, and engineering sciences with novel paradigms of information technology. This will produce the synergy effects required to address many of our 21st century challenges. After the age of physical, biological and technological innovations, FuturICT will lead Europe into the next era – a wave of information-driven social and socio-inspired innovations.

Globalisation and technological change have made our world a different place. This has created or intensified a number of serious problems, such as global financial and economic crises, political instabilities and revolutions, the quick spreading of diseases, disruptions of international supply chains, organised crime, international conflict and world-wide terrorism, and increased cyber-risks as well.

Although the creation of more and more interconnected systems and the pace of innovation in the area of information and communication technologies (ICT) have contributed to the above problems, future ICT can also be key to the solution. It can create unprecedented benefits for our economy and society, based on a whole range of new methods and innovations. For this, ICT must acquire the ability to flexibly adapt to the needs of society. In this way, it can become a stabilising factor fostering transparency, trust, respect for individual rights, and opportunities for participation in social, economic, and political processes. This requires us to establish a new science of multi-level complex, global systems and a co-evolution of ICT with society, by bringing the best knowledge of experts on information and communication systems, complex systems and the social sciences together. The vision of the FuturICT flagship project is to develop the capacity to explore and manage our future, based on a fundamental understanding of the institutional and interaction-based principles that make connected systems work well.

The methods and ‘Big Data’ needed for such a scientific endeavour are now becoming available: it is, therefore, time to make a ‘Big Science’ effort to couple methods and data with theories and models, like in the Human Genome Project. This endeavour should be open, because we need to prevent private monopolies of socio-economic data, and it should be federated, because joint interdisciplinary efforts are the only way to tackle humanity’s global challenges and ensure leadership in socio-inspired ICT innovations. The investments into the FuturICT project can benefit citizens and society in many ways: by promoting collective awareness of the impacts of our decisions and actions, by mitigating global problems and systemic risks, and by creating new possibilities to participate in social, economic and political affairs. In particular, FuturICT will create the basis for new spin-offs, business opportunities and jobs.

www.futurict.eu
The Need for New Knowledge in a Fundamentally Changed World

Today, neither past knowledge nor established policies seem sufficient anymore to manage the future (see Box 1). This is because technological, social and economic systems are becoming more and more complex, and also mutually interdependent. Recent ICT developments such as ubiquitous connectivity, instant information access and the increased penetration of social networking platforms have had a catalytic effect, speeding up and enforcing such interdependence and destabilising many established systems.

Paradigm Shift in Our Understanding of the World

The conventional ‘medicines’ to tackle the problems of our world fail more and more often. But many problems today are due to an out-dated understanding of our world. In fact, our traditional way of thinking is fundamentally wrong, because the world has changed: While its parts still look pretty much the same, we have networked them and made them strongly interdependent. When ‘self-organisation’ sets in, the components’ individual properties are no longer characteristic for the system behaviour, but collective behaviour takes over. Group dynamics and mass psychology are two typical examples.

Lee C. Bollinger, President of Columbia University, formulated the issue as follows:

“The forces affecting societies around the world... are powerful and novel. The spread of global market systems... are... reshaping our world... raising profound questions. These questions call for the kinds of analyses and understandings that academic institutions are uniquely capable of providing. Too many policy failures are fundamentally failures of knowledge.”

As a consequence of the above, we have to turn our attention away from the visible components of our world to the invisible part of it: their interactions. In other words, we need a shift from an object-oriented to an interaction-oriented view, as it is at the heart of complexity science. This paradigm shift is perhaps of similar importance as the transition from a geocentric to a heliocentric view of the world. It has fundamental implications for the way in which complex techno-socio-economic systems must be managed and, hence, for politics and economics. Focusing on the interactions in a system and the multi-level emergent dynamics resulting from them opens up fundamentally new solutions to long-standing problems (see Box 2).

Such strongly connected systems often behave completely different from loosely connected systems and opposed to what our everyday intuition suggests, a situation raising fundamental scientific challenges, but also ethical ones (see Boxes 2-4):

- The dynamics of strongly connected systems with positive feedbacks is faster.
- Extreme events occur more often and can impact the whole system.
- Self-organisation and strong correlations dominate the dynamics of the system.
- The system behaviour is often counter-intuitive, and unwanted feedback or side effects are typical.
- The system behaviour is hard to predict, and planning for the future may not be possible.
- Opportunities for external control are very limited.
- Even the most powerful computers cannot perform an optimisation of the system behaviour in real time, as the number of interacting system elements is too large.
- The competition for limited resources implies reduced redundancies in the system and a larger vulnerability to random failures or external shocks.
- The loss of predictability and control lead to an erosion of trust in private and public institutions, which in turn can lead to social, political, or economic destabilisation.

Ethical Information and Communication Systems

FuturICT is not interested in tracking individual behaviour or gathering data on individual actions. Its aim is to understand the macroscopic and statistical interdependencies within the highly complex systems on which we all depend.

The FuturICT project will have a strong research focus on ethical issues, and is committed to informing the public about the use of socio-economic data. For example, FuturICT will promote the development of a Trustable Web and of privacy-respecting data mining technologies that give users control over their data. It will strongly engage in preventing and counter-acting the misuse of data and the Internet. More broadly, the project will seek public involvement to build and sustain confidence in its values (see Box 4).

Finally, we consider it as a moral obligation to push the research directions promoted by the FuturICT project forward as quickly as possible. Given the fragility of the financial and economic system, the risks that this may finally impact the stability of our society and promote crime, corruption, violence, riots, and political extremism, or even endanger our democracies and our cultural heritage are not negligible anymore. Quick scientific progress is needed in order to learn how to efficiently stop the on-going cascading effects and downward trends. It is of similar importance to ensure that social and socio-inspired innovations will benefit humanity and not end up in the hands of a few stakeholders, as partially happened in genetics (particularly food production).
FuturICT wants to promote human well-being, increase the self-awareness of society, reduce vulnerability and risk, increase resilience (the ability to absorb societal, economic, or environmental shocks), reduce damages due to large-scale loss of control related to unexpected cascading effects and systemic shifts, develop contingency plans, explore options for future opportunities and challenges, increase sustainability, facilitate flexible adaptation, promote fairness and happiness, protect and increase social capital, support economic, political, and social participation, find a good balance between central and decentralised (global and local) control, protect privacy and other human rights, pluralism and socio-bio-diversity, and support collaborative forms of competition ("co-opetition").

Such strongly coupled systems cannot be managed well in a merely top-down fashion. Rather than controlling the individual elements of a system, it becomes crucial to stimulate a more favourable self-organisation in the whole system by establishing suitable interaction rules (the ‘rules of the game’) (see Table 1). Bottom-up elements allow for greater flexibility, efficiency, and resilience of the system (see Box 5).

Many crises result from domino or cascading effects (see Box 6). These may, for example, be compared with the formation of traffic jams. In fact, urban traffic flows form a strongly coupled system. The traffic flows from different points of origin towards different destinations may significantly influence each other. Classical traffic light control is based on supercomputing centres, which collect flow-rate measurements from many intersections and implement pre-determined control decisions in a top-down fashion. As the decision cannot be optimised in real-time (because there are too many alternative control options), one adapts a solution, which is optimal for, say, the typical Monday morning or the time after a soccer match. The average situation, however, never really occurs, since the variability of the flows from one red light phase to another is high. Hence, today’s traffic light control is far from optimal. A better approach controls traffic flows bottom-up (or combines top-down and bottom-up elements in a suitable way), letting traffic lights flexibly respond to the actual traffic situation. When measuring not only the outflows from road sections, but also the inflows, a short-term anticipation of groups of vehicles becomes possible. This allows the traffic lights to turn green when a vehicle group arrives. It is interesting to note that a high-level of system performance is not reached, when each traffic intersection simply implements the best possible local control (as Adam Smith’s principle may suggest). However, everyone profits if neighbouring intersections coordinate with each other through short-term flow anticipation: car drivers, users of public transport, bikers, pedestrians, and the environment as well. This example illustrates how complex, highly variable and largely unpredictable systems can be made more efficient and resilient: by a combination of real-time measurement, short-term anticipation, self-control, and the interruption of cascading effects (here: the avoidance of spill-over effects). As a result, crises can be prevented or mitigated, and scarce resources (in the above case: space and time) can be used in a better way.
Future ICT Systems as Artificial Social Systems

Our ICT systems are increasingly suffering from similar problems to those that worry societies: the lack of coordination, instability, inefficient use of resources, conflicts of interest. The recent explosion of cybercrime and the new notion of cyber-war leave the impression that conventionally operated ICT networks may get out of control. This is happening because ICT systems are usually not tested for the systemic interactions of their components. Yet, they are complex systems, which are made up of billions of non-linearly interacting elements (computers, smartphones, software agents etc.). More and more, these components take autonomous decisions based on an internal representation (“subjective” interpretation) of the surrounding world and expectations regarding future conditions. This effectively makes them artificial social systems. For example, computer-based automatic trading strategies now perform the majority of transactions in our world’s financial system.

The realisation that complex ICT systems cannot be effectively controlled in a top-down manner has led to a large body of research on bio-inspired computing. This research has produced many powerful algorithms (such as genetic or ant algorithms) as well as control paradigms for complex self-organised systems. However we still do not know how to effectively build trusted and resilient ICT system on a global scale. From the background of the envisaged new science (without which modern physics and launching satellites would have hardly imaginable). It will promote a new understanding of our techno-socio-economic-environmental system, and facilitate new solutions to long-standing problems.

Currently, most information and communication systems are not designed for the collective behaviour that may result from the interaction of their components (the same is also true for socio-economic systems). As we go on connecting these systems more and more densely, this can bring about a lack of robustness (failure tolerance) and a lack of resilience (i.e. a vulnerability to attacks and external shocks) as recent scientific analyses reveal. Given the ubiquitous use of ICT systems and our strong dependence on the reliability of these systems, proper design principles for such socially interactive systems must be urgently identified. This ultimately requires fundamental knowledge from the social sciences.

<table>
<thead>
<tr>
<th>Well controllable systems of the past</th>
<th>Complex systems of today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly connected or independent system components</td>
<td>Strongly connected and interdependent system components</td>
</tr>
<tr>
<td>Dominated by the (visible) system components</td>
<td>Dominated by their (invisible) interactions</td>
</tr>
<tr>
<td>Simple system behavior</td>
<td>Complex system behavior</td>
</tr>
<tr>
<td>Sum of properties of individual system components characterizes system behaviour</td>
<td>Emergent collective behavior, implies new (and often unexpected) system behaviour</td>
</tr>
<tr>
<td>Conventional wisdom works well</td>
<td>Counter-intuitive behavior, extreme events are common</td>
</tr>
<tr>
<td>Well predictable and controllable in top-down fashion</td>
<td>Less predictable, management by setting rules for bottom-up self-organization</td>
</tr>
</tbody>
</table>

Table 1: Comparison of weakly connected systems with local or regional interactions (as we tended to have them in the past) with strongly connected, complex systems (as we often have them today). In order to understand systemic risks resulting from the new interdependencies and to develop the ability of integrated risks management, we need to overcome the classical silo thinking and even more than that: We need a new way of thinking, a paradigm shift from focusing on the components of a system to focusing on their non-linear interactions, as studied by complexity science. This paradigm shift will be of similar importance as the one from a geocentric to a heliocentric worldview (without which modern physics and launching satellites would have hardly imaginable). It will promote a new understanding of our techno-socio-economic-environmental system, and facilitate new solutions to long-standing problems.
The Opportunity of Creating Socially Interactive ICT

Despite the strong coupling between ICT and society most of today’s ICT systems are “blind” with respect to social phenomena. Much research has been devoted to making computers recognise the personal context of an individual, adapt their functionality to individual needs and optimise the interaction between the individual and the system. In contrast, there is very little understanding of the interaction between society as a whole and information technology. Much of the influence that information technology today has on society is unintended and random. For example systems that deliver personalised news feeds to users base their decisions on individual preferences, but pay no attention to larger consequences such as a potential radicalisation or fragmentation of public opinion. Automatic trading systems tend to optimise individual or corporate goals, but pay little attention to the consequences of their actions on the market as a whole and potential global crises created by them.

FuturICT will build on emerging research in areas such as Reality Mining and large-scale real-time analytics of social media to endow ICT with collective and self awareness. A crucial element will be to combine research in ubiquitous sensing, machine learning and knowledge discovery with large-scale complexity science based social models.

Collective, or self awareness is a key element for the co-evolution of ICT with society. The aim is to enable the global ICT system to autonomously adapt to social needs, react to unforeseen events and generally have a desirable, stabilising effect on social processes and phenomena. The system will be able to reshuffle resources (e.g. information sources, bandwidth, distributed computing resources) to enable better analysis and management of emerging crisis situations, to mediate interactions in and between communities, and to provide emergency “slow down and ask human” mechanisms, preventing the system from accelerating crises and systemic failures.

In summary, FuturICT will facilitate a paradigm shift from the focus on a single device reacting to its immediate environment to a systemic view on a global scale, in order to enable proper response to complex techno-socio-economic phenomena and collective behaviors emerging in our world. Such socially interactive systems will be controlled democratically by the people in a bottom-up way and implemented by building on favorable self-organisation processes, leveraging the systems’ collective (self-)awareness and the ability to model complex social phenomena.

The Urgent Need of a Federated Big Science Approach

The complexity in our ICT systems and the techno-socio-economic challenges of humanity in the 21st century require our society to make a large-scale federated investment to counter-act disastrous cascading effects (see Box 6), negative interferences, and tragedies of the commons, and fill the current knowledge gaps to enable this (see Box 7). The FET Flagship Call by the European Commission provides a unique and timely opportunity for this (see Boxes 8 and 9).

We urgently need to learn how to manage our future in a complex, strongly connected world. We, furthermore, need to develop realistic scientific models of our globalised techno-socio-economic world. A federated approach is ultimately required to extend the available capacities for systemic risk assessment and integrated risk management.
Research Priorities

FuturICT will build its global ICT platform by integrating various Observatories into interconnected Exploratories, which will eventually be fused to form a single, integrated infrastructure. The interconnected Observatories and Exploratories will feature real-time data-mining, computer simulations to facilitate scenario analyses, and interactive environments allowing people to explore realistic virtual worlds. As the Observatories start off from already existing cores, first practically relevant applications are expected after 2 years. Practical use cases of the FuturICT flagship include smart cities (as more than 50% of the world population is now living in cities), smart energy systems (as micro-generation of electrical power will increase the number of independent energy providers multiple times), smart health systems (to ensure a high quality of life in an ageing society at affordable costs), and better financial architectures (to reduce the related societal losses). New solutions will also be developed to reduce crime, corruption, and conflict. Eventually, FuturICT’s Participatory Platform will inform decision-makers and involve citizens. A focus on Managing Complexity will develop integrative system designs and new decision-making and governance tools. The Innovation Accelerator will speed up research, development, and the creation of new business opportunities. Finally, a broad spectrum of socially inspired ICT will be developed.

To gain a better understanding of social, economic and ICT systems, a number of over-arching research challenges must be addressed, such as: 1. the interrelationship between structure, dynamics, and function, 2. strongly coupled systems, interdependent networks, 3. contagion and cascading effects, 4. ecological and social systems approaches, 5. concepts to manage complexity, 6. suitable incentive schemes, 7. integrative systems design, 8. resilience, 9. systemic risks, 10. sustainability, or 11. trust.

Over a ten year time period, FuturICT is expected to fill the current knowledge gaps and to greatly advance the following new research areas: non-equilibrium economics, the science of strongly coupled and interdependent systems, the science of multi-level complex systems, a new data science, and methods to assess systemic risks and manage them in an integrated way. Presently, these areas appear like continents just discovered, and many new breakthroughs are expected almost as it was possible at Humboldt’s times.

The European Flagship Program and its Call for Big Science

The FuturICT project is the response to a call from the Future and Emerging Technology (FET) section of the European Commission, hence the name FET Flagship. The objective is to support Big Science in Europe with a “Man on the Moon” type vision. In the first round, 21 flagship candidates were narrowed down to six Flagship Pilots. FuturICT was determined as leading Flagship Pilot proposal, addressing technosocio-economic and environmental challenges of the future. Box 9 shows a comparison with the other Flagship Pilots.

Each pilot will submit detailed proposals in April 2012. At least two flagship projects will be supported by an amount of up to 1 billion EUR each over a time period of 10 years. This is about a tenth (or less) of what is invested into other Big Science projects: the CERN elementary particle accelerator, the ITER fusion reactor, or the Galileo satellite program, the Human Genome project, nanotechnology, etc. Approximately half of the money, i.e. 50 million EUR per year, must be mobilised by the project partners from national budgets and funding agencies, from business and industry, or from donations. It is planned to distribute a considerable fraction of the flagship budget through Open Calls. This will allow a wide scientific community to contribute to the common goals of the project.

What Distinguishes FuturICT from Other Candidate Flagships

- FuturICT will develop a new science of big data, allowing one to understand how an ocean of information bits can be turned into useful knowledge, wisdom, and business opportunities.
- FuturICT will build a Planetary Nervous System by harvesting the data streams from smart sensors that are now becoming commercially available and spreading all over the world.
- FuturICT aims at building up non-embodied artificial intelligence, supporting collective (self-) awareness, and connecting the brains of millions or even billions of people to promote creativity and collective intelligence.
- Among its many goals, FuturICT is also promoting global health by building a related Observatory and identifying social ways of spreading healthy behaviour.
- FuturICT will promote social well-being. As humans prefer to be helped by others, the project also seeks ways to promote the mutual understanding and solidarity in increasingly multi-cultural and fragmented societies.

The particular strengths of the FuturICT project are its particular societal relevance, the immediate importance of its results to master our everyday life in the future, its large and quickly growing community integrating multiple disciplinary backgrounds, the participation of multiple European countries, the significant support of scientific communities in other continents, the strong focus on ethical issues, the open project architecture, the innovative organisational concept with its bottom-up elements, and the remarkable activities in the area of education. Further benefits of FuturICT are discussed in Box 20.

Need for a New Multi-Level Complex Systems Science

The challenges of the 21st century require the development of a new kind of complexity science: the science of multi-level complex systems focusing on realistic models rather than just metaphorical analyses. This new science will allow us to understand not only the impact of a system component on others, but also the resulting links between micro-level interactions and macro-level behaviour (and vice versa). We also need to understand the complex interdependencies between the different stakeholders, institutions, infrastructures and networks on which our society is built. This requires social scientists to ask the right questions and provide a characterisation of the system components (individuals, institutions, etc.). It requires complexity scientists to gain theoretical insights by studying systemic interactions of these components. And it requires computer scientists and information and communication experts to create methods, data and platforms that will allow us to understand and manage our world better (see Figure 1).
Need for a New Data Science

The FuturICT project also calls for a new Data Science (or a new Social Information Theory), which focuses not just on bits and bytes, but also on the meaning and impact of information (as we need to learn under what conditions new knowledge is created from existing pieces of information). It also requires a considerably extended complexity science, which studies not only the stylised patterns and dynamics resulting from the non-linear interaction of simple elements. It also needs to understand the result of interactions between individuals with cognitive complexity or system elements with a complex response to the surrounding world. Such systems with various levels of complexity are probably not analytically tractable and, therefore, require the use of future supercomputers.

Despite the urgent need for such a multi-level complex systems science and although many of its components have been created in the past, a coordinated effort has not yet come about due to institutional obstacles and a lack of resources. The FuturICT project will, for the first time, integrate all necessary competencies by bringing together the best of all available knowledge from the engineering, natural and social sciences (see Figure 2).

This new science will be boosted by the availability of vast amounts of data from a wide variety of techno-socio-economic systems. In fact, future sensor networks will produce more live stream data than can be stored or moved around. To make use of them, they must be aggregated ‘on the fly’ - and in a privacy-respecting way (see Box 1). But these data could also be used to collectively form something like a “Planetary Nervous System”, which would make it possible to create collective (self-)awareness of the impact that our decisions and actions are likely to have on our techno-socio-economic-environmental system (see Box 10).
How to Establish a Planetary Nervous System

The goal of creating a planetary nervous system is to measure the state of the world and the interactions in it. For this, real-time data mining, so-called “reality mining”, will be established, using data of the Internet and the semantic web. Additionally, data will be collected by linking sensors which aggregate information about the technological, social, or economic activities around them. Such a global sensor network can, for example, be established by connecting the sensors in today’s smartphones (which comprise accelerometers, microphones, video functions, compasses, GPS, and more). Here, FuturICT will closely collaborate with Prof. Sandy Pentland’s team at MIT’s Media Lab.

In order to reach that users will contribute their own data voluntarily, a number of criteria must be fulfilled:

1. The system must provide incentives (such as sharing benefits and profits generated with the provided data).
2. A micropayment system is needed to establish a market for the reward points earned.
3. Users must be given control over their own data and what they are used for.
4. A privacy-respecting data mining approach must be developed.
5. Macroscopic measurement procedures must be invented to anonymise and aggregate sensitive data “on the fly”.

Two illustrative examples for smart-phone-based collective sensing applications are the open streetmap project and a decentralised earthquake sensing and warning concept.

In turn, an ability to quantify the social impact of our actions will help us to avoid decisions that exploit or destroy the socio-economic fabric on which our society is built, for example, social capital, solidarity and trust. It will eventually promote a more responsible behaviour, just as the measurement of the environmental footprint has done. Developing the socio-economic fabric on which our society is built, for example, social capital, solidarity and trust. It will eventually promote a more responsible behaviour, just as the measurement of the environmental footprint has done. Developing the ability to quantify the social footprint seems a particularly promising way to successfully establish sustainable systems.

What FuturICT Will Do

A Way Forward, Aided by Information

The complexity of modern technology lies far beyond the capacity of the human brain to comprehend or analyse in detail. Information technology can considerably expand this capacity. For example, scientists and engineers rely on massive computer power and data processing to design and test everything from cars and electronic devices to medical drugs.

We face even greater complexity in our socio-economic systems, especially in the interaction with the rapidly expanding technological infrastructures such as the Internet and the Earth’s vast, multi-component environment. Only recently, however, have we begun to exploit the power of information technology to gain a better understanding of the human-Earth system, and to improve our capacity to manage this system on the basis of well-founded knowledge.

The FuturICT project aims to develop new science and technology, capitalising on the current data revolution. The project will develop a visionary information framework, considering insights from social sciences, complexity theory and ethics. This system will be able to act as a ‘Policy Simulator’ or ‘Policy Wind Tunnel’, allowing people to test multiple options in a complex and uncertain world, and produce pluralistic perspectives of possible outcomes. The framework would analyse data on a massive scale and leverage them with scientific knowledge, thereby giving politicians and decision-makers a better understanding to base their decisions on. Through the concept of a socially inclusive Participatory Platform, FuturICT will extend such capabilities to empower citizen, communities, small businesses, and NGOs, creating a whole ecosystem of new applications and forms of social and economic participation. In the long run, this would enable every one of us to explore the possible or likely consequences of even barely imaginable scenarios, effectively helping us to see just a little around the corner into possible futures (see Box 11).

Illustration of cascading effects in techno-socio-economic-environmental systems, which may be triggered by the disruption (over-critical perturbation) of an anthropogenic system. A more detailed picture can be given for specific disasters. Note that the largest financial damage of most disasters is caused by such cascading effects.

FuturICT is often confronted with questions regarding the predictability of its models. Recent findings suggest that the dynamics in social systems depends at least on three different factors: the situational context, interaction effects, and random events. Therefore, the measurement of the first two factors should, in principle, allow for probabilistic forecasts.

In fact, a systemic analysis, combined with a situational analysis, allowed one to predict developments such as the destabilisation of the financial system or the overall political impact of September 11 on various countries. Nevertheless, long-term forecasts are not a goal of FuturICT. We recognise that long-term forecasts are restricted to a few global trends (such as Moore’s law or population growth and related resource issues), and that forecasting the exact timing is generally difficult in social systems. Short-term anticipation, however, is often sufficient to reach significant improvements by adaptive strategies (e.g. principles of self-organisation and self-control, see Box 5).

In addition, it is often possible to predict likely courses of events, since cascading effects follow from causal relationships (see Figure below). Note that an assessment of the robustness of a system does not require forecasting (i.e. when something will be happening), but only a predictive model (that says under what conditions something is likely to happen). Given suitable data, it increasingly becomes possible to determine how the state of a complex system depends on the properties of the system components, their interactions, the environment, institutional setting, and resources. Given the availability of situational and contextual data, it should also become possible to determine the impact of predictions on social systems, namely whether the case of a self-defeating prophecy is expected to occur, or the case of a self-fulfilling prophecy, or the case where the prediction has no significant effect at all. Finally, as has been experimentally demonstrated, it is possible to design recommender systems in such a way that their usefulness is not undermined by information feedbacks.
The potential benefits are huge: reducing the impact of major societal and economic problems by only 1 percent would save the European Union billions of Euros every year (see Box 12). Indeed, the social and complexity sciences can present a number of recent impressive success stories (see Box 2). Thus, similar to weather forecasts, it is expected that FuturICT can create value that is many times higher than the required investments.

Costs and Benefits of the FuturICT Project

Among other challenges, FuturICT will develop new concepts to address the following problems, the societal costs of which are listed below:

1. Financial crisis: Losses of 2.2 trillion $
2. Crime and corruption: 2-5% of GDP, about 2 trillion $ annually.
3. Conflict: Global military expenditures of 1.5 trillion $ annually.
4. Terrorism: 90 billion $ lost output of the US economy as a result of 9/11 attacks.
5. Flu: A true influenza pandemic infecting 1% of the world population would cause losses of 1-2 trillion $ per annum.

If the impact of these societal problems would be reduced by 1% only, this would already create a benefit many times higher than the investments into the FuturICT Flagship project. Based on previous success stories regarding a better management of complex systems, we expect that an improved understanding of the fundamental underlying issues will facilitate improvements between 10% and 30%, given the new insights are properly applied. For comparison: Swiss citizens pay 10 Swiss Francs per year for the public weather forecasting system, but the benefit is 5 times higher.

Benefits expected from ICT-related growth and productivity: ICT-producing industries contribute directly to productivity and growth through their own rapid technological progress. For example, a rough estimate indicates that in the United States in 2008, Internet intermediaries contributed at least 1.4% of GDP value added. This produces ‘spill-over effects’ on the rest of the economy as ICT diffusion leads to innovation and efficiency gains in other sectors. A good example for the economic potential of socio-inspired ICT is the company Facebook, the value of which is believed to have exceeded already 65 billion $.

Further prospects and benefits of the FuturICT project are summarised in Box 20.

How Will it Work?

To achieve its goals, the FuturICT project will work out new conceptual, theoretical, methodological, and technological approaches. In particular, it will develop new information and communication technology (ICT) to collect massive data sets and mine them for useful or meaningful information. It will also have the capacity to self-organise and adapt to the collective needs of users. These ICT systems will be the basis of the FuturICT Platform (see Figure 3). It will be built on three new inter-connected instruments to gain novel insights into our world: the Living Earth Simulator, the Planetary Nervous System and the Global Participatory Platform (see Figure 4).
The Living Earth Simulator will enable the exploration of future scenarios at different degrees of detail, integrating heterogeneous data and models and employing a variety of perspectives and methods (such as sophisticated agent-based simulations, multi-level models, and new empirical and experimental approaches). Exploration will be supported via a ‘World of Modelling’ – an open software platform, comparable to an app-store, to which scientists and developers can upload theoretically informed and empirically validated modelling components that map parts of our real world. The Living Earth Simulator will require the development of interactive, decentralised, scalable computing infrastructures, coupled with an access to huge amounts of data, which will become available by integrating various data sources coming from online surveys, web and lab experiments, and from large-scale data mining.

This is where the Planetary Nervous System comes in. It can be imagined as a global sensor network, where ‘sensors’ include anything able to provide data in real-time about socio-economic, environmental or technological systems (including the Internet). Such an infrastructure will enable real-time data mining - reality mining - and the calibration and validation of coupled models of socio-economic, technological and environmental systems with their complex interactions. It will even be possible to extract suitable models in a data-driven way, guided by theoretical knowledge.

The Global Participatory Platform will promote communication, coordination, cooperation and the social, economic and political participation of citizens beyond what is possible through the eGovernance platforms of today. In this way, FuturICT will create opportunities to reduce the gap between users and providers, customers and producers etc., facilitating a participation in industrial and social value generation chains. Building on the success principles of Wikipedia and the Web2.0, societies will be able to harness the knowledge and creativity of multiple minds much better than we can do today. The Global Participatory Platform will also support the creation of Interactive Virtual Worlds. Using techniques such as serious multi-player online games, we will be able to explore possible futures – not only for different designs of shopping malls, airports, or city centres, but also for different financial architectures or voting systems.

In addition to the interconnected systems forming the FuturICT Platform, the flagship project will also create an Innovation Accelerator approach, FuturICT significantly contribute to laying the foundations of this Innovation Union. Through new ICT technologies, Innovation Scouts and Knowledge Transfer Supply Chains, the distance between academic inventions and innovations in the technological, social and political realm will be significantly reduced. In this way, transforming new ideas into new products will be much more efficient than today (currently this requires of the order of 30 years in many areas).

Fundamentally new ICT systems that are responsive, responsible, ethical and privacy-respecting by design, are key to exploring, understanding, and managing our future in a resilient and sustainable way. The FuturICT flagship will promote the required paradigm shifts.

FuturICT’s New Approach to ICT Systems and Innovation

Humans are a unique species, as their behaviour is largely driven by information. By the creation of virtual worlds and in many other ways, future ICT systems will partly overcome the limitations of our physical and biological world. In fact, they will create an almost unlimited number of new goods and services, and thereby many new economic opportunities, but also social and political ones.

Europe’s vision of creating an Innovation Union is a logical response to these opportunities. With its Innovation Accelerator approach, FuturICT will significantly contribute to laying the foundations of this Innovation Union. Through new ICT technologies, Innovation Scouts and Knowledge Transfer Supply Chains, the distance between academic inventions and innovations in the technological, social and political realm will be significantly reduced. In this way, transforming new ideas into new products will be much more efficient than today (currently this requires of the order of 30 years in many areas).

Fundamentally new ICT systems that are responsive, responsible, ethical and privacy-respecting by design, are key to exploring, understanding, and managing our future in a resilient and sustainable way. The FuturICT flagship will promote the required paradigm shifts.

Big Data: A New Era of the Social Sciences is Ahead

In the past, getting data about social systems and social interactions was very time consuming and cumbersome. In the meantime, lab and web experiments and online surveys have simplified the collection of data, and the internet as well as other information and communication systems are collecting tons of data allowing one to study social activity patterns. This is opening up the door for a new era of the social sciences. In parallel, much progress has been made in modelling key elements of social systems. Now, there are models considering spatial and network interactions, heterogeneity, and randomness (which can change the systemic outcome dramatically!). There are also models of emergence of cooperation under unexpected conditions (namely in social dilemma situations, which normally promote a ‘tragedy of the commons’), models for the formation of social norms (even when individuals have to make sacrifices for this), and models for the spreading of conflicts or violence, models of collective behaviour (such as opinion formation, crowd disasters, revolutions), as well as models taking into account communication and learning. Currently,
It is Time for Practical Steps to a Better Future

To succeed with its ambitious endeavour, the FuturICT project team is building communities in most European countries and other continents, bridging between ICT, social and complexity sciences. It will build the FuturICT platform by integrating 4 interconnected Exploratories, which are ICT infrastructures to explore our global techno-socio-economic-environmental system through the combination of large-scale data mining, multi-level modelling, supercomputing and participatory approaches.

Figure 5. The Exploratories of Society, Economy, Technology, and Environment are established by integration of various Observatories. The Exploratory of Society, for example, could be composed of Observatories for Social Well-Being, Health, Crime and Corruption, Conflict and War, Demography and Migration, and Resilience.

The Exploratories of Society, Economy, Technology, and Environment are composed of various interactive Observatories, for example, Observatories of Financial and Economic Systems, of Conflicts and Wars, of Social Well-Being, of Health Risks, of Transportation and Logistics etc. (see Figure 5). Integrating the Observatories and Exploratories over time will overcome disciplinary silo thinking and eventually facilitate a systemic picture of risks and opportunities as well as integrated risk management.

Note that FuturICT will pursue a pluralistic approach, allowing people to study many different perspectives in parallel. This will provide a more differentiated picture of the interactions on our planet and allow us to better manage our way forward in a rapidly changing world.

Potential and Need of Socio-Inspired Technologies

FuturICT’s research program will also be crucial for the effective design of future ICT systems, since these are indeed becoming socially interactive systems (see the Section on Artificial Social Systems above). As our society is now largely dependent on information and communication technologies, their stability and reliability has become absolutely crucial – but at least for current designs, this stability is not guaranteed. Systemic breakdowns, cyber-crime and cyber-war are problems that have recently become virulent and show the vulnerability of the systems to cascading failures and other problems (see Box 6). At the same time, several social features such as self-organisation, adaptiveness, emergent cooperation, social norms, cultures and community formation are new attractive features of future ICT systems. Trust is just one example of a hardly understood, but crucial property of our social and ICT systems. The creation of a Trustable Web, based on principles of social, reputation-based self-control in order to keep cyber-crime down, is probably the most important example of a future socio-inspired ICT system.

What FuturICT Will NOT Do

Most importantly, the FuturICT project will NOT attempt to collect “all the data in the world”, or to represent each individual on the globe by an identical copy in some giant multi-agent simulation, considering private features and preferences of all individuals. Science is the art of abstraction and approximation. Just as maps do not show all the features of our environment, a scientific model is specified such that a particular question can be addressed in the simplest possible way. That is, models are to be problem-specific, and parameters and variables not expected to be relevant for the answer should be neglected. In many cases, one is interested in global interdependences on the aggregate level. Then, a macroscopic description is sufficient. Most computer simulations are based on a multi-level approach and not on the micro-simulation of the individual system elements. As a matter of principle, it would obviously not be possible or desirable to simulate each individual in detail, considering the complexity of its cognitive dynamics. However, the interaction of many system elements often reduces the dimensionality of the relevant system dynamics (i.e. there is a small fraction of variables that matter, while many variables do not change over the relevant time scale and others change so quickly that they may be treated as random variables). In other words, the largest amount of complexity seems to occur on the ‘micro-level’ of the individual, while collective behaviour tends to be simpler due to many factors such as herding effects, social conventions, norms, and laws (otherwise we would not have cultural trends, fashions etc.). This implies the possibility of probabilistic short-term forecasts similar to weather forecasts (see Box 11). These are sufficient for adaptive management approaches, which can reach considerable improvements (see Box 5).

Organisational Principles

Setting funding issues aside, the strategy of the Partners of the currently running FuturICT Pilot project is to formulate a visionary goal, to elaborate a project with an Apollo-level ambition (as expected by the FET flagship program), to identify the related grand scientific challenges, to develop a research strategy and roadmap, to form an integrated multi-disciplinary community, and to develop a platform for global collaboration and exchange.

The FuturICT project is now supported by a large, and quickly growing multi-disciplinary community (see Box 15) so that it is already aligning the research agendas of hundreds of scientists of teams not immediately paid for by the pilot project. FuturICT enjoys the support of many European countries as well as strong US and Japanese communities. Step by step, the project is creating links to China, Singapore, Australia, South-American and African countries. In several of these countries, there is a strong desire to participate in addressing the global challenges FuturICT will tackle, based on complementary national budgets. Therefore, FuturICT is trying to create an open platform with interfaces that would allow other countries and projects to team up. One may imagine this similar to the organisational concept of the International Space Station. All this activity has changed, and is changing, the research landscape with spin-offs already set in motion.
FuturICT will be organised as a network of national hubs, with spokes to the various institutions in each country. Excellence centres, in contrast, are problem-specific international networks spanning several countries. This applies, in particular, to the Exploratories of Society, Economy, Technology and Environment. Consequently, there are two overlaid networks that help to integrate the communities and focus areas involved in the FuturICT flagship. The various academic institutions involved in FuturICT will ideally receive their funds through one single national institution. Each national community will have a certain degree of autonomy, but also a set of obligations, e.g. to ensure agreed deliveries and reports (see Figure 7). Responsibilities such as running jointly used Research Infrastructures or coordinating international Excellence Centres will be negotiated with the Steering Committee of FuturICT. All in all, the project may be roughly imagined as a super-large Integrated Project with one or a few institutions in each participating country as partners, a significant number of subcontractors, and an integrated Coordination Action or Network of Excellence. European funds will be used to match national funds proportionally, where possible, and vice versa.

Openness is an important organisational principle of the FuturICT. We envisage that the composition of the consortium of experts will continuously change over time to take new rising stars of science on board. Through open calls, FuturICT plans to allocate substantial research budgets to innovative research in order to reward excellent findings and support future research activities.

Openness will also be achieved by creating interfaces with business partners and policy-makers. In particular, the research infrastructures created by FuturICT (such as the Exploratories of Society, Economics, Technology, and Environment) will be open to researchers from outside the FuturICT consortium. This concept and the multi-level structure of FuturICT are also designed for a steady expansion.

In fact, scalability is an important organisational principle of the project, as it is anticipated that there will be an increasing demand for research in the area represented by FuturICT, i.e. the research platform must be suited to support continuous growth and participation.

In order to support rapid scientific advances, research activities will be grouped around excellence clusters, i.e. a critical mass of experts in one institution, which is closely connected with the best international experts in other European locations. Each research core of FuturICT (see Figure 3) will jointly be led by three (or more) researchers stemming from different European regions and complementary knowledge areas. This will lead to a balanced leadership, which is operational at all times (by mutually supporting each other). These scientists will take strategic decisions in close interaction with a (variable) number of further experts contributing to the same research core and stay in close contact with the Committees overseeing and coordinating the FuturICT flagship. In fact, the Science Committee will be composed of a subset of these core area leaders.

FuturICT will have a flexible and modern organisation, based on a multi-level hub-and-spoke network, integrating bottom-up elements (see Figure 6). Besides the subject-level organisation of FuturICT’s research activities, FuturICT will build on strong national FuturICT communities, often integrating dozens of teams from the areas of ICT, complexity science, and the social sciences. These communities will help to stimulate and coordinate research activities beyond what the FuturICT project itself can fund, i.e. act as a Network of Excellence and Coordination Action. The national scientific communities will be involved
1. through annual national and international workshops (part of which will have a ‘Hilbert format’, i.e. identify open problems and possible solution approaches rather than just presenting progress reports),
2. through awarding prizes to researchers for the best and most relevant results (providing money for follow-up research through the instrument of Open Calls).
Digital Earth has come to stand for the large and growing set of web-based geographic computing systems worldwide. These are both useful and promising, but do not yet constitute the envisioned ‘global commons’.

Below follow two excerpts from the Beijing Declaration on Digital Earth:

“Digital Earth is an integral part of other advanced technologies including: earth observation, geo-information systems, global positioning systems, communication networks, sensor webs, electromagnetic identifiers, virtual reality, grid computation, etc. It is seen as a global strategic contributor to scientific and technological developments, and will be a catalyst in finding solutions to international scientific and societal issues.”

“Digital Earth should play a strategic and sustainable role in addressing such challenges to human society as natural resource depletion, food and water insecurity, energy shortages, environmental degradation, natural disasters response, population explosion, and, in particular, global climate change.”

Considering this, FuturICT may be seen as a logical continuation of the Digital Earth Agenda with a focus on:

1. exploring and managing socially interactive systems,
2. real-time mining and modelling of techno-socio-economic data to promote collective (self-) awareness,
3. creating participatory platforms including populated virtual worlds.

Summary and Conclusions

FuturICT is not starting from scratch. It can stand on the shoulders of giants (see Boxes 16 and 17) and has learned from the experience of previous approaches (see Box 18). Building on several hundred teams of scientists in Europe and all over the world (see Box 15), FuturICT has a strong potential to promote the beneficial co-evolution of ICT and society, and also to encourage a new synthesis in and with the social sciences – supported by a plethora of computational methods for modelling, theory building, and analysis. Among other recent developments, the availability of Big Data will boost phenomenal progress in the social sciences (see Box 14), and will promote a new information science. Furthermore, creating an open platform, a ‘data commons’ (see Box 19) is expected to trigger off a new era of information and communication technologies, services, and products (see Figure B and Box 13).

History

A strong historical backdrop is provided by the Digital Earth project, see http://www.digitalearth-isde.org/ and http://en.wikipedia.org/wiki/Digital_Earth.

The following quotes are from the above Wikipedia page, accessed on July 24, 2011:

“In a speech prepared for the California Science Center in Los Angeles on January 31, 1998, [the former US vice president Al] Gore described a digital future where schoolchildren - indeed all the world’s citizens - could interact with a computer-generated three-dimensional spinning virtual globe and access vast amounts of scientific and cultural information to help them understand the Earth and its human activities…”

Reference Cases

Selected reference cases further illustrating FuturICT’s feasibility include:

- IBM SmarterPlanet (http://www.ibm.com/smartplanet),
- Microsoft Modeling the World (http://www.modelingtheworld.com/)
- Planetary Skin Institute (http://www.planetaryskin.org/)
- Second Life (http://secondlife.com/)
- Google.org (http://www.google.org/)
- Gapminder (http://www.gapminder.org/)
- Observatorium (http://www.observatorium.eu)
How FuturICT Differs from Previous Approaches

There have obviously been previous attempts to model the dynamics of the world. FuturICT has learned from them. It has a more sophisticated and more differentiated approach and is supported by hundreds of scientists worldwide. FuturICT is not aiming at long-term forecasts. It addresses current and generic problems. It aims at improving the system performance and the ability to absorb shocks (see Box 5 for its other goals). FuturICT's models will consider spatial and network effects, heterogeneity and randomness. They will build on the availability of Big Data and the possibility of real-time data mining as well as the progress in network theory, complex systems theory, multi-agent simulation, multi-level modelling, computational social science, experimental approaches and interactive platforms. Furthermore, FuturICT will develop new methods of investigation such as interconnected Exploratories, Living Earth Simulator, a Planetary Nervous System, a Global Participatory Platform.

Creating an Open, Transparent Platform for Everyone

FuturICT wants to overcome the current data fragmentation and “black holes” for data. Instead, it is trying to create an open platform for everyone. This includes establishing transparency regarding the data sources and their quality, the exact algorithms used, the statistical assessment of the results. Furthermore, it will be important to establish transparent, responsible use – a subject worked on by FuturICT's ethics committee. The result will be a new public good, like our environment, air, languages, and the Internet. This will enable an ecosystem of new services and jobs, and an age of creativity. The goal is to remove barriers for social, economic, and political participation. However, a public good requires measures to prevent a ‘tragedy of the commons’, such as data pollution, manipulation, misuse, and cyber-crime.

In order to build a Trustable Web, one needs to ensure control of users over their own data and the way they are used (see Box 13). One needs to create privacy-respecting information systems (and, hence, the use of pseudonyms). To promote responsible behaviour, a decentralised, transparent, and manipulation-resistant reputation system for information providers and contents is needed, together with a proper incentive system. This will establish a self-organising and self-regulating system, something like a socially adaptive and mutually beneficial information ecosystem. To design the system properly, we need to understand socially interactive systems, otherwise one will end up with the same problems as in our society, i.e. instabilities, coordination failures, poor system performance and tragedies of the commons, conflicts, (cyber-)crime, and (cyber-)wars.

Figure 8. Illustration of how Big Data of techno-socio-economic-environmental systems will boost better and better models, simulations, predictions, and applications. These will trigger off new business opportunities and spin-offs.

The FuturICT Knowledge Accelerator will bring about a quantum leap in our capacity to more effectively cope with the speed at which our world is changing, and make a vital contribution to societal resilience and a sustainable future. It will do so by combining the best established scientific methods with multi-scale computer modelling, social supercomputing, large-scale data mining and participatory platforms (including web experiments and populated virtual worlds). Innovations needed to drive FuturICT forward to reach these ambitious goals will be promoted through a series of ‘Hilbert Workshops’, i.e. think tanks to identify the fundamental problems and how they can be solved. As a result, we expect to see a century of social and socio-inspired innovations, opening up new social, economic, and political opportunities. Indeed, there are many more reasons to make public investments into the FuturICT project (see Box 20).
Some Reasons to Publicly Invest into the FuturICT Flagship Project

1. Considering what is at stake (see Boxes 3 and 12), there is a moral responsibility to do what we can to address the 21st century challenges.

2. A federated Big Science approach is needed to catch up with the pace at which the world is changing and new political, social, economic and technological problems are emerging.

3. FuturICT will provide policy- and decision-makers with innovative methods and instruments to improve the societal, economic, and political situation, whereas commercial companies have no such capacity.

4. FuturICT will ultimately create tools to tackle social and natural catastrophes on a large scale. Individual private companies do not provide such tools.

5. FuturICT is an ethically oriented project and builds bridges between many scientific communities, which have previously worked in separation.

6. FuturICT will be a major driving force for all scientific research in the areas of ICT, social sciences and complexity science. It is triggering off entirely new trends in research and development, even beyond the research activities funded by the project. FuturICT will publish its results to benefit everyone, while private companies tend to keep their data, methods, and results for themselves.

7. FuturICT pursues an open platform approach under European leadership, which will allow other countries to participate (e.g. Japan, China, Singapore, Australia, South America, Africa).

8. FuturICT supports cooperative behavior on a global scale, while companies mostly tend to engage in competition.

9. FuturICT creates outcomes that profit-driven companies are unlikely to produce (such as privacy-respecting data mining technologies, a Trustable Web, or a public data platform providing a high-quality common good).

10. It must be avoided that powerful tools and social innovations end up in the hands of a few stakeholders rather than benefiting humanity.

Further Information

Webpage (including publications, media response, events etc): http://www.futurict.eu

Facebook (including videos): http://www.facebook.com/FuturICT

Twitter (including interesting quotes): https://twitter.com/#!/FuturICT

Visioneer White Papers: http://springerlink.metapress.com/content/1951-6355/195/1/

Contacts with the FuturICT consortium can be established via:

Prof. Steven Bishop, University College London
Chair of the FuturICT Management Committee
s.bishop@ucl.ac.uk

Prof. Dirk Helbing, ETH Zurich, Swiss Federal Institute of Technology
Chair of the FuturICT Science and Steering Committee
dhelbing@ethz.ch
Further Information

Webpage (including publications, media response, events etc): http://www.futurict.eu

Facebook (including videos): http://www.facebook.com/FuturICT

Twitter (including interesting quotes): https://twitter.com/#!/FuturICT

Visioneer White Papers: http://springerlink.metapress.com/content/1951-6355/195/1/

Contacts with the FuturICT consortium can be established via:

Prof. Steven Bishop, University College London
Chair of the FuturICT Management Committee
s.bishop@ucl.ac.uk

Prof. Dirk Helbing, ETH Zurich, Swiss Federal Institute of Technology
Chair of the FuturICT Science and Steering Committee
dhelbing@ethz.ch