
IKL
a l o g i c f o r

i n t e r o p e r a t i o n

P a t H a y e s
F l o r i d a I H M C

O N T O L O G i n v i t e d p r e s e n t a t i o n
2 0 0 6 - 1 0 - 2 6

p h a y e s @ i h m c . u s

mailto:phayes@ihmc.us
mailto:phayes@ihmc.us

IKL, CL, CLIF, KIF, etc.

CL (Common Logic) is a draft ISO standard framework for describing first-
order logic. It is not a single syntax: particular conforming syntaxes are called
dialects. CL allows for a wide variety of surface syntax forms. CL syntax is
unusually 'free', allowing a wide variety of expressions, and extends the
semantics appropriately.

CLIF is one particular CL syntax, very 'lisp-like', modeled closely on KIF
(though not identical). For more on CL and CLIF, see the ISO draft standard
(available at http://common-logic.org/docs/cl/24707-21-June-2006.pdf Please do not cite
until final ISO approval.) Many of the examples in this talk are written in CLIF
syntax.

KIF is a venerable early 'standard' logic, the ancestor of CL. CLIF is very similar
to a subset of KIF. Historically, the KIF project was the precursor of all the rest
of this stuff, and many of the same people were involved. See
http://logic.stanford.edu/kif/kif.html

IKL is a recent extension of CL, very similar to CLIF, not yet 'standard' but in
active use. This talk will focus on IKL, but will illustrate a lot about CLIF, and
hence about CL, along the way. Development of IKL was supported by ARDA
under the IKRIS program. For more on IKL, including many examples, see
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html

2

see-ell

cliff

kiff

ickle

eye-kay-
ell

http://common-logic.org/docs/cl/24707-21-June-2006.pdf
http://common-logic.org/docs/cl/24707-21-June-2006.pdf
http://logic.stanford.edu/kif/kif.html
http://logic.stanford.edu/kif/kif.html
http://www.ihmc.us:16080/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us:16080/users/phayes/IKL/GUIDE/GUIDE.html

IKL

IKL is a Common Logic (CL) extension which adds some new kinds of
naming expressions, in particular a way to name propositions, but
otherwise is a classical first-order logic.

It is expressive enough to represent content from a wide variety of
exotic logics, all used by various systems to express ontological content.
It is specifically designed for interoperation between knowledge
systems.

One of the design principles of IKL was to keep the logic as
syntactically simple and as unconstrained as possible. As a result, many
different formalisms can be rendered or translated into IKL, and in
many cases the translations between them can be stated as IKL axioms.

3

IKL design
Panoptic (one universe, containing every possible 'thing':
quantifiers work properly) [IKL]

Transparent (meanings of expressions do not depend on the
logical context: equality works properly)[CL, IKL]

Unrestricted (any name can be used for any logical purpose:
no type/sort checking, few 'legality' constraints)[CL, IKL]

Uses ordinary logic (not modal, contextual, hybrid, partial,
multivalued, free, whatever: all the rest of the logic works
properly)[CL, IKL]

Is a network logic (meanings of expressions do not depend
on their network location: no lexical/syntactic negotiation)
(Horatio principle)[CL, IKL]

4

Network Logic
(Married Jack Jill)
(forall (x y)(if (and (Married x y)(Male x))
 (Female y)
))
(Male Jack)

5

(BinaryRelation Married)
(SymmetricRelation Married)

(forall (r)(iff
 (SymmetricRelation r)
 (forall (x y)(iff (r x y)(r y x)))
))

universe of people

mathematical universe

universe of relations
http://ex.PailOfWater

http://ex:relalg

http://ex:REL

http://ex
http://ex
http://ex
http://ex
http://ex
http://ex

Network Logic
(Married Jill Jack)
(forall (x y)(if (and (Married x y)(Male x))
 (Female y)
))
(Male Jack)

6

(BinaryRelation Married)
(SymmetricRelation Married)

(forall (r)(iff
 (SymmetricRelation r)
 (forall (x y)(iff (r x y)(r y x)))
))

universe of people

mathematical universe

universe of relations
http://ex.PailOfWater

http://ex:relalg

http://ex:REL

http://ex.MotherGoose

(Married Jill Jack)
(forall (x y)(if (and (Married x y)(Male x))
 (Female y)
))
(Male Jack)

(BinaryRelation Married)
(SymmetricRelation Married)

(forall (r)(iff
 (SymmetricRelation r)
 (forall (x y)(iff (r x y)(r y x)))
)) universe contains

people and relations
over people

http://ex
http://ex
http://ex
http://ex
http://ex
http://ex
http://ex
http://ex

For all what, exactly?

When an ontology says

(forall (x ...

what exactly does this mean? For all what? Often some particular
universe is intended, sometimes a 'closed world'. But the logic itself is
panoptic, and readers of your ontology can see only the axioms, not the
intention. So one should either restrict the quantifier:

(forall ((x person) ...

or else put the entire ontology into a CL module, which implicitly restricts
all the quantifiers without your having to rewrite them all, and allows
you to exclude some things from the 'local' universe:

(module http://ex.PailOfWater (exclude Married Male)(text
 (Married Jack Jill)
 (forall (x y)(if (and (Married x y)(Male x))
 (Female y)
))

 (Male Jack)
))

7

Things in the universe
called http://ex.PailOfWater,

which, b.t.w., do not include
Married and Male

http://ex.PailOfWater
http://ex.PailOfWater

For a full story, go elsewhere

Rather than survey the actual language(s) feature by feature, the rest this talk
will focus on how to translate from other notations into IKL/CLIF. For
details, background etc. see:

IKL:

IKRIS main site http://nrrc.mitre.org/NRRC/ikris.htm
overview http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html
formal spec (for geeks) http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html
slides http://www.ihmc.us/users/phayes/IKL/IKRIS_MV.ppt

CL:

main website http://cl.tamu.edu/

ISO draft http://cl.tamu.edu/docs/cl/24707-21-June-2006.pdf
slide shows http://cl.tamu.edu/docs/cl/Common-Logic-Mar2005.ppt
 http://cl.tamu.edu/docs/cl/Berlin_OpenForum_Delugach.ppt
Background papers
 http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf
 (This refers to SKIF, which was a very early CL draft)
 http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-82/SI_paper_12.pdf
 (This refers to 'SCL' which was an early CL draft)

8

http://nrrc.mitre.org/NRRC/ikris.htm
http://nrrc.mitre.org/NRRC/ikris.htm
http://www.ihmc.us:16080/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us:16080/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us:16080/users/phayes/IKL/SPEC/SPEC.html
http://www.ihmc.us:16080/users/phayes/IKL/SPEC/SPEC.html
http://www.ihmc.us:16080/users/phayes/IKL/IKRIS_MV.ppt
http://www.ihmc.us:16080/users/phayes/IKL/IKRIS_MV.ppt
http://cl.tamu.edu/ISO
http://cl.tamu.edu/ISO
http://cl.tamu.edu/ISO
http://cl.tamu.edu/ISO
http://cl.tamu.edu/docs/cl/24707-21-June-2006.pdf
http://cl.tamu.edu/docs/cl/24707-21-June-2006.pdf
http://cl.tamu.edu/docs/cl/Common-Logic-Mar2005.ppt
http://cl.tamu.edu/docs/cl/Common-Logic-Mar2005.ppt
http://cl.tamu.edu/docs/cl/Berlin_OpenForum_Delugach.ppt
http://cl.tamu.edu/docs/cl/Berlin_OpenForum_Delugach.ppt
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-82/SI_paper_12.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-82/SI_paper_12.pdf

Example: Context Logic to IKL

Context logic assumes that sentences are true in a context (not
just plain true)

ist(context, sentence)

ist(year(1998),
 (forall ((?x DutchCitizen)(?y DutchCitizen))
 (if (Married(?x,?y) and Male(?x))
 Female(?y))))

This kind of expression does not make sense in FO logic.
Proponents of context logic claim it is a new approach to the
foundations of logic itself.

Depending on the particular context logic, the meanings of
sentences, names, quantifiers, etc., can change between
contexts. This example changed in the year(2000). Context
logic is therefore neither transparent nor a network logic.

9

one sentence ...

... inside another
sentence?

IKL treats contextual assertions as relations between
contexts and propositions, rather than as a special new logical
form. The logic is then unchanged, but we have a new kind
of naming expression, a proposition name.

ist(c, <sentence>) (ist c (that <sentence>))

name of a
propositionrelation

between context
and proposition

Example: Context Logic to IKL10

ist(year(1998),
 (forall ((?x DutchCitizen)(?y DutchCitizen))
 (if (and Married(?x,?y), Male(?x))
 Female(?y))))

(ist (year 1998)
 (that
 (forall ((x DutchCitizen)(y DutchCitizen))
 (if (and (Married x y)(Male x)) (Female y))
)
)

A proposition name is a sentence with (that ...) wrapped around it.
Any sentence will do, no matter how complicated. Any such name denotes a
proposition of some kind, although in some 'paradoxical' cases it might not be
what it seems to be (more on this later). The names inside proposition names
still refer as usual, and logical rules apply to them as usual.

Proposition names are a new idea: but even though they are exotic names,
they are still just names. They refer to new kinds of thing, but they don't
change the actual logic. The actual logic of IKL is just common logic.

proposition
name

Example: Context Logic to IKL11

(ist (year 1998)
 (that
 (forall ((x DutchCitizen)(y DutchCitizen))
 (if (and (Married x y)(Male x)) (Female y)))
))

 so, we have to keep track of the fluents ...

(ist (year 1998)
 (that
 (forall (x y)(if
 (and (DutchCitizen x 1998)(DutchCitizen y 1998))
 (if (and (Married x y 1998)(Male x))
 (Female y))))
)
)

Transparent (reference is independent of
context; equality works properly)

Example: Context Logic to IKL12

(ist (year 1998)
 (that
 (forall (x y)(if
 (and (DutchCitizen x 1998)(DutchCitizen y 1998))
 (if (and (Married x y 1998)(Male x))
 (Female y))))
)
)

In fact, we no longer need the surrounding ist in this case, as the inner sentence
has been completely decontextualized, so we can 'unwrap' the inner sentence from
its proposition name:

(forall (x y)(if
 (and (DutchCitizen x 1998)(DutchCitizen y 1998))
 (if (and (Married x y 1998)(Male x))
 (Female y))))

The process of putting contextual content into a panoptic logic is basically one of
decontextualizing it by properly incorporating the 'context' into the names.

All the art lies in knowing where to insert the context parameters. This case, for
example, presumes that Male and Female are not fluents. In IKL such
conditions can be stated as part of the ontology itself, or as a 'meta-ontology'
used by a translator.

Example: Context Logic to IKL13

Many are the Ways
A fluent is a time-varying property... but there are many ways to put this idea
into a logical formalism, and some of these come with heavy philosophical
baggage. CLIF accommodates them all:

Fluent as a relation (on continuants) with an extra time parameter:

(Married x y 1998)

Fluent as a function from times to relations:

((Married 1998) x y)

Fluent as relation on temporal slices of enduring things ('4-d worms', histories,
endurants)

(Married (x 1998)(y 1998))

And, for comparison, fluent as a relation between times and propositions, using
IKL:

(istAtTime 1998 (that (Married x y)))

(Married x y) + 1998

14

Axiomatizing syntax transforms in CLIF

Relations between different forms can be stated using CLIF/IKL axioms:

(forall (c r ...)(if
 (ContextParameterizableRelation r c)
 (iff (r ... c)((r c) ...))
))

Although in some cases you have to effectively embed LISP into CLIF (which
you can indeed do) and so it might be simpler to just use a PERL script.

(forall (r ...)(iff (r (argseq ...))
(forall (x ...)(= (argseq x ...)(conseq x (argseq ...))))

(forall (c)(= (sliceall c) (argseq)))
(forall (c x ...)(=
 (sliceall c x ...)
 (conseq (x c)(sliceall c ...))
))

(forall ((r sliceable) c ...)(iff
 (r ... c)
 (r (sliceall c ...))
))

15

Contexts can be many things: times, time-intervals (in two senses),
places (ditto), points of view, systems of belief, sources, documents, etc..
These all have different logical/ontological properties. For example:
beliefs and document sources may 'contain' contradictions, but times and
places cannot; conjunction, but not disjunction, is preserved under truth
throughout-a-time-interval; the reverse under truth-during-a-time-interval.

Since IKL uses an ontology of contexts rather than a logic of contexts, it
can describe all these variations explicitly, using for example different
'ist' relations, without requiring a change to the logic.

(isTrueThroughout 2002 (that (= (President USA) GWB)))

(isTrueDuring 2002 (that (exists ((x LesserKestrel))
 (observed x IslesOfScilly))))

(Believes John (that (and (Human Superman)
 (not (Human Superman)))))

Ontologies are more flexible
than Logics16

The 'decontextualizing' rule which extracted the inner
content from the 'ist' can itself be stated as an axiom:

(forall (c p)(if (decontext p)
(iff (ist c p)(p))
))

(forall (c (p decontext))(iff (ist c p)(p)))

Much of the utility of IKL (using CL 'wild west' syntactic
freedom) lies in its ability to directly express what previously
had to be treated as meta-mappings between different
formalisms or different ontologies. Now, a variety of
alternatives can be treated as one large ontology.

Axiomatizing syntax transforms in CLIF

p here refers to the
proposition. IKL can quantify over

all propositions.

17

IKL's truth predicate
(forall (c (p decontext))(iff (ist c p)(p)))

Q: What does (p) mean?

A: It asserts that the proposition p is true: that is, it's just like writing
the sentence of the proposition.

((that <sentence>)) means the same as <sentence>

 So the above says: if p is 'decontextualized', then (ist c p) is true iff
p is true just by itself.

We could in fact define ist without a context argument as a truth
predicate:

(forall (p)(iff (p)(ist p)))

Note, this quantifies over relations (legal in CL) and uses the same
relation name with different arities (legal in CL).

18

opaque names

Sometimes, names used in a context change their meaning in more
radical ways than just being time-sliced. For example, logics of belief (or,
belief contexts) allow beliefs to contain misunderstandings about what
names denote. Superman is Clark Kent, but Lois Lane doesn't believe it.
She thinks there are two people when in fact there is only one. She
knows who Clark Kent is, but her idea of Superman is imaginary. The
name 'Superman' in her beliefs means something different from what it
means in the real world.

To handle cases like this, IKL treats quoted names as functions from the
context to the false referent.

('Superman' (belief Lois))

is what the name 'Superman' denotes in the world of Lois' beliefs, which
might be quite different from Superman. In particular,

(not (= ('Superman' (belief Lois)) "Clark Kent"))

double quotes
are CL's way of

allowing names to
contain spaces

19

opaque names
Just as with proposition names, if you leave out the context, you get
the 'normal' case. Here, if you call a quoted name as a function with
no arguments, then you get the normal referent:

<name> = ('<name>')

This allows one to write axioms about things by quantifying over
their names, i.e. over character sequences. For example, we can
define a 'transparent context' as one that uses all names correctly:

(forall (c)(iff (TransparentContext c)
 (forall ((s charseq))(= (s)(s
c)))
)

Note the restriction to character sequences: this is typical when
quantifying over opaque names.

20

opaque names: FAQ
Q: How can a character string be a function??
A: In CL, anything in the universe of quantification is a function (and
a relation). In IKL (and in CLIF), the universe always contains
character strings. Ergo, they can be used as functions.

Q: That doesn't look like the kind of logic I'm used to, I don't like
it.
A: OK, ignore the formal semantics and think of the context
argument to the quoted-name-function as a kind of subscript to the
quoted name, to indicate that its being used in a nonstandard
'contextual' way. That's really all that this boils down to in practice.

 Q: What 'world' is this imaginary un-Superman really in?
A: An IKL panoptic universe. When you say 'forall' in IKL, you are
quantifying over everything, even imaginary things. A basic rule is: if
anyone could possibly refer to it, it can be in an IKL universe. Harry
Potter is in an IKL universe, and so is his pet aardvark (which AK
Rowling hasn't thought of, but I have.)

21

opaque names: FAQ

Q: Does that mean that IKL assumes that all this fantasy stuff
is real?
A: No, things that actually exist in the real world are a small part
of the IKL universe. To refer to them, use a predicate like isReal.
Think of it as a context if you like.

Q: When Im writing my axioms, do I have to keep restricting
my quantifiers to exclude all this nonsensical stuff?
A: No. Nor should you, indeed. Just write your axioms assuming
that you are talking about some universe, put them in a Common
Logic module and give it a name. The name of that module will be
used by others as the name of your universe of discourse.

Q: Why 'opaque'?
A: I'm glad you asked that question. See the next slide.

22

opaque names
The traditional way is to use the name in a context to mean what it refers to in
that context. Our example in a modal belief logic might then look like this:

Believes(Lois): (not (= Clark_Kent Superman))

where 'Superman' here denotes what Lois thinks it refers to, i.e. not the real
Superman. The problem is, when different uses of a name refer differently, one
cannot do equality reasoning:

(= Superman Clark_Kent)
(Believes(Lois): (not (= Clark_Kent Clark_Kent))) ??

A context (modality) which changes the referent of a name in this way is called
opaque because the names inside it are invisible to normal logical inferences.

 IKL incorporates this 'opacity' into the name itself, rather than relying implicitly
on the syntactic context of use, thereby preserving the transparency of the logic:

(= Superman Clark_Kent)
(Believes Lois (that
 (not (= Clark_Kent ('Superman' Lois)))
))

Basically, IKL reduces all opacity to ordinary quotation, a single 'opaque'
construction which is entirely unproblematic and has a trivial semantics.

23

opaque names

This has some costs - we have to be explicit about Lois' confusions - but also
some benefits. For example, to say something 'normal' in an opaque logic, one
has to resort to quantifiers:

(exists (x)(and
 (= x Superman)
 (Believes Lois (not (= x Superman)))
))

but this can be stated directly and simply in IKL:

(not (= Superman ('Superman' Lois)))

and by quantifying over the names, we can make general statements, for example
that Lois is confused about some referent, without saying which:

(exists ((s charseq))(not (= (s)(s Lois))))

24

opaque names as typed literals

Although this opaque name construction is not conventional
in logic, it is in fact already in wide use in the form of
datatyped literals, which consist of a character string and a
mapping, called a datatype, from strings to intended
denotations. For example in RDF

ex:arthur ex:ageInYears "30"^^xsd:number .

which maps to an IKL atomic sentence using an opaque
name:

(ex:ageInYears ex:arthur ('32' xsd:number))

25

Example 2: Description Logics

Description logics don't look anything like conventional FO logic. They
define classes in terms of other classes and 'restrictions' on properties, such
as the class of people whose parents are US citizens and were born after 1955.

In CLIF/IKL, classes and properties are unary and binary relations, and
the various DL class constructors are functions on these relations. For
example

(= ChildOfUSCitizenPost1955
(AND (ALLARE parentOf (MUSTBE isCitizenOf USA))
 (ALLARE dateOfBirth YearsSince1955)
)

which is the translation of the OWL-DL on the next slide. Then to say that
someone is in this class, just use an atomic assertion:

(ChildOfUSCitizenPost1955 "Dorothy Möston")

26

(= ChildOfUSCitizenPost1955
(AND (ALLARE parentOf (MUSTBE isCitizenOf USA))
 (ALLARE dateOfBirth YearsSince1955)
)

<owl:Class rdf:id="#ChildOfUSCitizenPost1955">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#parentOf" />
 <owl:allValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isCitizenOf" />
 <owl:hasValue rdf:resource="#USA" />
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#dateOfBirth />
 <owl:allvaluesFrom rdf:resource="#YearsSince1955" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Although, to be fair, much of the longwindedness is due to the RDF/XML in the
OWL version. The CLIF translation style at the top mirrors the usual DL syntax
quite closely.

For more on this topic, see http://www.ihmc.us/users/phayes/CL/SW2SCL.html
and http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf

Example 2: Description Logics27

http://www.ihmc.us/users/phayes/CL/SW2SCL.html
http://www.ihmc.us/users/phayes/CL/SW2SCL.html

Example 3: UNA and closed worlds

Since IKL can quantify over its own names, it can state general
conditions on naming. These are often assumed to require a special non-
monotonic logic, but that is a misapprehension.

A DB is a complete list of employees, so if a name isn't listed there then
that person is not an employee (a closed world assumption).

(forall ((name charseq))(if
 (employee (name))
 (member name DBlist)
))

Each employee is listed there under a single name (a unique name
assumption)

(forall ((n1 charseq)(n2 charseq))(if
 (and (= (n1)(n2))(member n1 DBlist)(member n2 DBlist))
 (= n1 n2)
))

28

Example 4: modal business rules

The general outlines of how to translate modal logics into FO have been
known for decades. Temporal modalities are treated similarly to temporal
context logics. For deontic modalities (permissions, obligations) its
usually better to map them into an ontology of actions and states, with a
'badness' property to indicate prohibited actions. For example:

(forall ((e rentalEvent))(if
 (not (ValidDrivingLicense (licence (driver e))))
 (ImproperEvent e)
))

translates the deontic rule

(forall ((e rentalEvent))
[Obligatory: (ValidDrivingLicence (licence (driver e)))]
)

This style also allows for more nuanced descriptions of kinds of improper
or forbidden events, and the circumstances which surround them.

29

Some other things
CLIF/IKL syntax:

= allows any unicode character sequence to be used as a
name

= allows arbitrary text to be attached as a comment to any
expression, to any depth

= supports restricted and numerical quantifiers

= can be transmitted in XML using the CL conventions

= provides for naming of 'knowledge sources' and importing
of IKL text, using Web conventions.

30

Bottom Line

IKL can express just about any content which can be written
in any formalism, sometimes more compactly than the
original.

In many cases it can also express relationships between
different formalizations.

Writing CLIF/IKL axioms is easy as there are no restrictions
on what can be said: one can directly state object data, data
models, meta-models and structural axioms all in the same
formalism, and it is all processed using the same logical rules.

It is the nearest thing yet to a universal ontology solvent.

31

Geek Time
Q: IKL can quantify over the propositions indicated by its own sentences, and it
has an unrestricted truth predicate, so isn't it self-contradictory because of
the paradoxes?
A: No. Most logics impose syntax constraints to prevent writing self-referential
sentences, but in IKL they all just turn out to be contradictions, is all. For
example

(= p (that (not (p))) Liar paradox (no such p)

(forall (x)(iff (R x)(not (x x))))
 Russell's paradox (no such R)

(forall (x)(iff (K x)
 (= x (that (forall (y)(iff (K y)(not (y)))))
))
 Kripke's contingent paradox (no such K)

In IKL, these all assert that an impossible thing exists. Since this is always
false, they are all contradictions. What makes them seem paradoxical is that
they look like definitions. If they were, we would be in trouble.
There is a cost to this freedom, though. For users, be careful writing axioms;
for logic designers, its harder to show that models exist; and for inference
engines, there are new kinds of contradiction to consider.

32

Names are the Ontological key

Moral: It's all about having enough ways of naming things. CL lets
you use names to refer to relations and functions (classes,
properties, ...) . CLIF has names for numbers and character sequences
(names), and CL modules supply names for local universes and for
ontologies themselves. IKL adds opaque names for imaginary things
and names for propositions. That seems to be enough.

First order logic, correctly understood, is adequate for all reasoning
that anyone will ever want to do. You don't need a different logic: you
need better ways to refer.

“ If names be not correct, language is not in accordance with the truth of
things. If language be not in accordance with the truth of things, affairs
cannot be carried on to success. ... What the superior man requires is just
that in his words there may be nothing incorrect. “

 Confucious, Analects XIII, 3

